Do we need to label large datasets for river water segmentation? Benchmark and stage estimation with minimum to non-labeled image time series

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Automatic water segmentation often relies on supervised deep learning, which requires large, annotated datasets. We investigate deep learning approaches for water segmentation and, consequently, water stage estimation that need minimal or non-annotated datasets. We evaluated the Space-Time Correspondence Network or STCN, Segment Anything (SAM), and a combination of SAM with Grounding DINO. We used images from three stationary camera gauges and one dynamic river image dataset captured with an unmanned aerial vehicle (UAV). Further, we retrieved the water level using the produced water marks for the static images. For the UAV dataset, our results show that STCN and SAM achieved similar performances for image segmentation. Our findings reveal that the models can produce realistic water masks and water stage measurements. STCN achieved the best results for the camera gauges, making it a suitable option for sub-hour monitoring. Our approaches can be viable tools for ad hoc water stage measurements.

Details

OriginalspracheEnglisch
Seiten (von - bis)2719-2747
Seitenumfang29
FachzeitschriftInternational journal of remote sensing
Jahrgang46
Ausgabenummer7
Frühes Online-Datum6 Feb. 2025
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Externe IDs

Mendeley 6714531d-07a8-3513-ae49-6879c8182db0

Schlagworte

Schlagwörter

  • camera gauge, Deep learning, remote sensing, water level, water segmentation