DNA Pre-Alignment Filter Using Processing Near Racetrack Memory
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Recent DNA pre-alignment filter designs employ DRAM for storing the reference genome and its associated meta-data. However, DRAM incurs increasingly high energy consumption of background and refresh energy as devices scale. To overcome this problem, this paper explores a design with racetrack memory (RTM)-an emerging non-volatile memory that promises higher storage density, faster access latency, and lower energy consumption. Multi-bit storage cells in RTM are inherently sequential and thus require data placement strategies to mitigate the performance and energy impacts of shifting during data accesses. We propose a near-memory pre-alignment filter with a novel data mapping and several shift reduction strategies designed explicitly for RTM. On a set of four input genomes from the 1000 Genome Project, our approach improves performance and energy efficiency by 68% and 52%, respectively, compared to the state-of-the-art DRAM-based architecture.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 53-56 |
Seitenumfang | 4 |
Fachzeitschrift | IEEE computer architecture letters |
Jahrgang | 21 (2022) |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 22 Juli 2022 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0002-5007-445X/work/160049130 |
---|
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- DNA sequence alignment, genome sequencing, processing-in-memory, seed location filtering