Discrimination of Complex Mixtures Using Carbon Nanotubes-based Multichannel Electronic Nose: Coffee Aromas

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

The discrimination and identification of complex mixtures remain a significant challenge to chemical analysis. The conventional technique for complex mixture analysis refers to a complete component-by-component approach, such as gas chromatography/mass spectrometry (GC/MS), which requires sophisticated facilities and professional personnel. In this work, we propose a strategy using carbon nanotubes-based multichannel e-nose for complex mixture discrimination, taking coffee aroma as an example. By extracting efficient features from the sensing response profile, a highly distinctive smellprint feature for coffee aroma is achieved. In combination with an efficient machine learning classifier algorithm, an excellent identification accuracy of 97.4% for three types of coffee aroma is achieved. This proposed strategy provides a portable, lowcost, high-efficiency solution for complex mixture discrimination and could be applied in various fields, such as food quality monitoring, volatile organic compound-related disease diagnosis, environmental monitoring, public safety securing, etc.

Details

OriginalspracheEnglisch
Titel2023 IEEE Nanotechnology Materials and Devices Conference (NMDC)
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seitenumfang5
ISBN (elektronisch)979-8-3503-3546-0
ISBN (Print)979-8-3503-3547-7
PublikationsstatusVeröffentlicht - 12 Dez. 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Nanotechnology Materials and Devices Conference (NMDC)
ISSN2378-377X

Externe IDs

Scopus 85182024700
ORCID /0000-0002-4349-793X/work/160048995
ORCID /0000-0002-3007-8840/work/160049243
ORCID /0000-0002-9899-1409/work/160049454

Schlagworte