Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Stanislas Demuth - , Les Hôpitaux Universitaires de Strasbourg (Autor:in)
  • Jérôme De Sèze - , Les Hôpitaux Universitaires de Strasbourg (Autor:in)
  • Gilles Edan - , CHU de Rennes (Autor:in)
  • Tjalf Ziemssen - , Klinik und Poliklinik für Neurologie, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Françoise Simon - , Icahn School of Medicine at Mount Sinai (Autor:in)
  • Pierre-Antoine Gourraud - , CHU de Nantes (Autor:in)

Abstract

Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical "digital twin" has recently become popular to designate digital representations of patients as a support for a wide range of data science applications. However, the concept is ambiguous when it comes to practical implementations. Here, we propose a medical digital twin framework with a data-centric approach. We argue that a single digital representation of patients cannot support all the data uses of digital twins for technical and regulatory reasons. Instead, we propose a data architecture leveraging three main families of digital representations: (1) multimodal dashboards integrating various raw health records at points of care to assist with perception and documentation, (2) virtual patients, which provide nonsensitive data for collective secondary uses, and (3) individual predictions that support clinical decisions. For a given patient, multiple digital representations may be generated according to the different clinical pathways the patient goes through, each tailored to balance the trade-offs associated with the respective intended uses. Therefore, our proposed framework conceives the medical digital twin as a data architecture leveraging several digital representations of patients along clinical pathways.

Details

OriginalspracheEnglisch
Aufsatznummere53542
FachzeitschriftJMIR medical informatics
Jahrgang13
PublikationsstatusVeröffentlicht - 28 Jan. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8799-8202/work/177360911
unpaywall 10.2196/53542
Scopus 85216967956

Schlagworte

Schlagwörter

  • Electronic Health Records, Humans, Precision Medicine/methods