Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Hannah Sophie Muti - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Lara Rosaline Heij - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Gisela Keller - , Technische Universität München (Autor:in)
  • Meike Kohlruss - , Technische Universität München (Autor:in)
  • Rupert Langer - , Universität Bern, Kepler Universitätsklinikum (Autor:in)
  • Bastian Dislich - , Universität Bern (Autor:in)
  • Jae Ho Cheong - , Yonsei University (Autor:in)
  • Young Woo Kim - , National Cancer Center Korea (Autor:in)
  • Hyunki Kim - , Yonsei University (Autor:in)
  • Myeong Cherl Kook - , National Cancer Center Korea (Autor:in)
  • David Cunningham - , Royal Marsden NHS Foundation Trust (Autor:in)
  • William H. Allum - , Royal Marsden NHS Foundation Trust (Autor:in)
  • Ruth E. Langley - , University College London (Autor:in)
  • Matthew G. Nankivell - , University College London (Autor:in)
  • Philip Quirke - , University of Leeds (Autor:in)
  • Jeremy D. Hayden - , Leeds Teaching Hospitals NHS Trust (Autor:in)
  • Nicholas P. West - , University of Leeds (Autor:in)
  • Andrew J. Irvine - , University of Leeds (Autor:in)
  • Takaki Yoshikawa - , National Cancer Center Japan (Autor:in)
  • Takashi Oshima - , Kanagawa Cancer Center Research Institute (Autor:in)
  • Ralf Huss - , Universitätsklinikum Augsburg (Autor:in)
  • Bianca Grosser - , Universitätsklinikum Augsburg (Autor:in)
  • Franco Roviello - , University of Siena (Autor:in)
  • Alessia d'Ignazio - , University of Siena (Autor:in)
  • Alexander Quaas - , Universität zu Köln (Autor:in)
  • Hakan Alakus - , Universität zu Köln (Autor:in)
  • Xiuxiang Tan - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Alexander T. Pearson - , The University of Chicago (Autor:in)
  • Tom Luedde - , Universitätsklinikum Düsseldorf (Autor:in)
  • Matthias P. Ebert - , Universität Heidelberg (Autor:in)
  • Dirk Jäger - , Universität Heidelberg (Autor:in)
  • Christian Trautwein - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Nadine Therese Gaisa - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Heike I. Grabsch - , University of Leeds, Maastricht University (Autor:in)
  • Jakob Nikolas Kather - , Rheinisch-Westfälische Technische Hochschule Aachen, University of Leeds, Universität Heidelberg (Autor:in)

Abstract

Background: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides. Methods: In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5. Findings: Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522–0·737) to 0·836 (0·795–0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752–0·841) to 0·897 (0·513–0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676–0·794) to 0·863 (0·747–0·969) for detection of microsatellite instability and from 0·672 (0·403–0·989) to 0·859 (0·823–0·919) for detection of EBV status. Interpretation: Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer. Funding: German Cancer Aid and German Federal Ministry of Health.

Details

OriginalspracheEnglisch
Seiten (von - bis)e654-e664
FachzeitschriftThe Lancet Digital Health
Jahrgang3
Ausgabenummer10
PublikationsstatusVeröffentlicht - Okt. 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 34417147