Development and technical validation of an ultrasound nebulizer to deliver intraperitoneal pressurized aerosols in a rat colon cancer peritoneal metastases model
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Background/aim: To develop and validate a nebulizer device for anti-cancer research on pressurized intraperitoneal aerosol supply in a preclinical peritoneal metastases (PM) rat model. Material and methods: For aerosol generation, an ultrasonic nebulizer (USN) was modified. Aerosol analyses were performed ex-vivo by laser diffraction spectrometry (LDS). Intraperitoneal (IP) 99mtechnetium sodium pertechnetate ( 99mTc) aerosol distribution and deposition were quantified by in-vivo single photon emission computed tomography (SPECT/CT) and compared to liquid IP instillation of equivalent volume/doses of 99mTc with and without capnoperitoneum. PM was induced by IP injection of HCT116-Luc2 human colon cancer cells in immunosuppressed RNU rats. Tumor growth was monitored by bioluminescence imaging (BLI), 18F-FDG positron emission tomography (PET) and tissues examination at necropsy. Results: The USN was able to establish a stable and reproducible capnoperitoneum at a pressure of 8 to 10 mmHg. LDS showed that the USN provides a polydisperse and monomodal aerosol with a volume-weighted diameter of 2.6 μm. At a CO 2 flow rate of 2 L/min with an IP residence time of 3.9 s, the highest drug deposition efficiency was found to be 15 wt.-%. In comparison to liquid instillation, nebulization showed the most homogeneous IP spatial drug deposition. Compared to BLI, 18F-FDG-PET was more sensitive to detect smaller PM nodules measuring only 1–2 mm in diameter. BLI, 18F-FDG PET and necropsy analyses showed relevant PM in all animals. Conclusions: The USN together with the PM rat model are suitable for robust and species-specific preclinical pharmacological studies regarding intraperitoneal delivery of pressurized aerosolized drugs and cancer research.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 570 |
Fachzeitschrift | BMC Cancer |
Jahrgang | 22 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Dez. 2022 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85130378077 |
---|---|
PubMed | 35597921 |
Mendeley | e5f77d45-5ebf-3aca-ad5f-b0ebbb6bdae0 |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Aerosols, Animals, Colonic Neoplasms/diagnostic imaging, Fluorodeoxyglucose F18, Humans, Nebulizers and Vaporizers, Peritoneal Neoplasms/diagnostic imaging, Rats, Ultrasonic nebulizer, Human colorectal cancer cells, Peritoneal metastasis, Orthotopic rat model, Intraperitoneal pressurized aerosol