Deep transfer learning approach for automatic recognition of drug toxicity and inhibition of sars-cov-2

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Julia Werner - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Raphael M. Kronberg - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Pawel Stachura - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Philipp N. Ostermann - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Lisa Müller - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Heiner Schaal - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Sanil Bhatia - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Jakob N. Kather - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Arndt Borkhardt - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Aleksandra A. Pandyra - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Karl S. Lang - , Universität Duisburg-Essen (Autor:in)
  • Philipp A. Lang - , Heinrich Heine Universität Düsseldorf (Autor:in)

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 and is responsible for the ongoing pandemic. Screening of potential antiviral drugs against SARS-CoV-2 depend on in vitro experiments, which are based on the quantification of the virus titer. Here, we used virus-induced cytopathic effects (CPE) in brightfield microscopy of SARS-CoV-2-infected monolayers to quantify the virus titer. Images were classified using deep transfer learning (DTL) that fine-tune the last layers of a pre-trained Resnet18 (ImageNet). To exclude toxic concentrations of potential drugs, the network was expanded to include a toxic score (TOX) that detected cell death (CPETOXnet). With this analytic tool, the inhibitory effects of chloroquine, hydroxychloroquine, remdesivir, and emetine were validated. Taken together we developed a simple method and provided open access implementation to quantify SARS-CoV-2 titers and drug toxicity in experimental settings, which may be adaptable to assays with other viruses. The quantification of virus titers from brightfield images could accelerate the experimental approach for antiviral testing.

Details

OriginalspracheEnglisch
Aufsatznummer610
FachzeitschriftViruses
Jahrgang13
Ausgabenummer4
PublikationsstatusVeröffentlicht - Apr. 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 33918368

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • Chloroquine, Deep learning, Deep transfer learning, Drug screening, Emetine, Hydroxychloroquine, Remdesivir, SARS-CoV-2