Deep Neural Cellular Potts Models

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

The cellular Potts model (CPM) is a powerful computational method for simulating collective spatiotemporal dynamics of biological cells. To drive the dynamics, CPMs rely on physicsinspired Hamiltonians. However, as first principles remain elusive in biology, these Hamiltonians only approximate the full complexity of real multicellular systems. To address this limitation, we propose NeuralCPM, a more expressive cellular Potts model that can be trained directly on observational data. At the core of NeuralCPM lies the Neural Hamiltonian, a neural network architecture that respects universal symmetries in collective cellular dynamics. Moreover, this approach enables seamless integration of domain knowledge by combining known biological mechanisms and the expressive Neural Hamiltonian into a hybrid model. Our evaluation with synthetic and real-world multicellular systems demonstrates that NeuralCPM is able to model cellular dynamics that cannot be accounted for by traditional analytical Hamiltonians.

Details

OriginalspracheEnglisch
TitelProceedings of the 42nd International Conference on Machine Learning
Seiten44351-44371
Seitenumfang21
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings of Machine Learning Research
Band267

Konferenz

Titel42nd International Conference on Machine Learning
KurztitelICML 2025
Veranstaltungsnummer42
Dauer13 - 19 Juli 2025
Webseite
OrtVancouver Convention Center
StadtVancouver
LandKanada

Externe IDs

ORCID /0000-0003-0137-5106/work/199957821
ORCID /0000-0003-3649-2433/work/199961956

Schlagworte