Deep learning in cancer pathology: a new generation of clinical biomarkers

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Amelie Echle - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Niklas Timon Rindtorff - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Titus Josef Brinker - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Tom Luedde - , Universitätsklinikum Düsseldorf (Autor:in)
  • Alexander Thomas Pearson - , The University of Chicago (Autor:in)
  • Jakob Nikolas Kather - , Rheinisch-Westfälische Technische Hochschule Aachen, Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)

Abstract

Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of routine diagnostic material. Nevertheless, routinely available tumour tissue contains an abundance of clinically relevant information that is currently not fully exploited. Advances in deep learning (DL), an artificial intelligence (AI) technology, have enabled the extraction of previously hidden information directly from routine histology images of cancer, providing potentially clinically useful information. Here, we outline emerging concepts of how DL can extract biomarkers directly from histology images and summarise studies of basic and advanced image analysis for cancer histology. Basic image analysis tasks include detection, grading and subtyping of tumour tissue in histology images; they are aimed at automating pathology workflows and consequently do not immediately translate into clinical decisions. Exceeding such basic approaches, DL has also been used for advanced image analysis tasks, which have the potential of directly affecting clinical decision-making processes. These advanced approaches include inference of molecular features, prediction of survival and end-to-end prediction of therapy response. Predictions made by such DL systems could simplify and enrich clinical decision-making, but require rigorous external validation in clinical settings.

Details

OriginalspracheEnglisch
Seiten (von - bis)686-696
Seitenumfang11
FachzeitschriftBritish journal of cancer
Jahrgang124
Ausgabenummer4
PublikationsstatusVeröffentlicht - 16 Feb. 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 33204028

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete