Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Titus J Brinker - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Lennard Kiehl - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Max Schmitt - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Tanja B Jutzi - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Eva I Krieghoff-Henning - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Dieter Krahl - , MVZ DermatoHistoPathologie Heidelberg GmbH (Autor:in)
  • Heinz Kutzner - , MVZ Dermatopathologie Friedrichshafen (Autor:in)
  • Patrick Gholam - , Universitätsklinikum Heidelberg (Autor:in)
  • Sebastian Haferkamp - , Universitätsklinikum Regensburg (Autor:in)
  • Joachim Klode - , Universitätsklinikum Essen (Autor:in)
  • Dirk Schadendorf - , Universitätsklinikum Essen (Autor:in)
  • Achim Hekler - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Stefan Fröhling - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Jakob N Kather - , Else Kröner Fresenius Zentrum für Digitale Gesundheit, Deutsches Krebsforschungszentrum (DKFZ), Nationales Zentrum für Tumorerkrankungen (NCT) Heidelberg, Universität Heidelberg, Universitätsklinikum Aachen (Autor:in)
  • Sarah Haggenmüller - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Christof von Kalle - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Markus Heppt - , Staatliche Berufsfachschulen am Universitätsklinikum Erlangen (Autor:in)
  • Franz Hilke - , Klinik und Poliklinik für Dermatologie (Autor:in)
  • Kamran Ghoreschi - , Klinik und Poliklinik für Dermatologie (Autor:in)
  • Markus Tiemann - , MVZ HPH Institut für Pathologie und Hämatopathologie GmbH (Autor:in)
  • Ulrike Wehkamp - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Axel Hauschild - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Michael Weichenthal - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Jochen S Utikal - , Universitätsklinikum Schleswig-Holstein Campus Kiel (Autor:in)

Abstract

AIM: Sentinel lymph node status is a central prognostic factor for melanomas. However, the surgical excision involves some risks for affected patients. In this study, we therefore aimed to develop a digital biomarker that can predict lymph node metastasis non-invasively from digitised H&E slides of primary melanoma tumours.

METHODS: A total of 415 H&E slides from primary melanoma tumours with known sentinel node (SN) status from three German university hospitals and one private pathological practice were digitised (150 SN positive/265 SN negative). Two hundred ninety-one slides were used to train artificial neural networks (ANNs). The remaining 124 slides were used to test the ability of the ANNs to predict sentinel status. ANNs were trained and/or tested on data sets that were matched or not matched between SN-positive and SN-negative cases for patient age, ulceration, and tumour thickness, factors that are known to correlate with lymph node status.

RESULTS: The best accuracy was achieved by an ANN that was trained and tested on unmatched cases (61.8% ± 0.2%) area under the receiver operating characteristic (AUROC). In contrast, ANNs that were trained and/or tested on matched cases achieved (55.0% ± 3.5%) AUROC or less.

CONCLUSION: Our results indicate that the image classifier can predict lymph node status to some, albeit so far not clinically relevant, extent. It may do so by mostly detecting equivalents of factors on histological slides that are already known to correlate with lymph node status. Our results provide a basis for future research with larger data cohorts.

Details

OriginalspracheEnglisch
Seiten (von - bis)227-234
Seitenumfang8
FachzeitschriftEuropean journal of cancer
Jahrgang154
PublikationsstatusVeröffentlicht - Sept. 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85110720759
ORCID /0000-0002-3730-5348/work/198594450

Schlagworte

Schlagwörter

  • Adult, Aged, Deep Learning, Humans, Lymphatic Metastasis, Melanoma/pathology, Middle Aged, Sentinel Lymph Node/pathology