Datenbasierter Entwurf von Einbettungsbeobachtern unter Nutzung von Automatischem Differenzieren

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

High gain observers are frequently utilized to estimate the current internal state of nonlinear systems. The approach relies on transforming the system into the observability canonical form and occasionally embedding it into a higher dimensional space. While this can offer advantages in terms of existence conditions and convergence, the computational and implementation tasks are often daunting. In this paper, we address some of these challenges by using neural networks and automatic differentiation to approximate the necessary functions for implementing the observer. This offers a pragmatic approach to bypassing some of the problems associated with embedding observers.

Details

OriginalspracheDeutsch
Seiten (von - bis)745-756
Seitenumfang12
FachzeitschriftAt-Automatisierungstechnik
Jahrgang72
Ausgabenummer8
PublikationsstatusVeröffentlicht - 27 Aug. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-3347-0864/work/192581774

Schlagworte

Schlagwörter

  • automatic differentiation, data-driven, high gain observer, neural networks, observability canonical form