Corpus and Baseline Model for Domain-Specific Entity Recognition in German

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Transfer Learning approaches are a promising means to analyze low-resource domain specific texts. The German SmartData corpus is the first German corpus, annotated with entities from different domains, and thus allows to investigate transfer learning approaches for Named Entity Recognition (NER) on different domains. In order to prepare such investigations, this work includes a thorough analysis of the SmartData corpus, and a revision w.r.t. annotations and the split into training and test data, considering the distribution of document and entity types. Based on that a baseline model for NER using BiLSTM-CRF neural networks including hyperparameter optimization is presented.

Details

OriginalspracheEnglisch
Titel2020 6th IEEE Congress on Information Science and Technology (CiSt)
Herausgeber (Verlag)Wiley-IEEE Press
Seiten314-320
Seitenumfang7
ISBN (elektronisch)9781728166469
ISBN (Print)978-1-7281-6647-6
PublikationsstatusVeröffentlicht - 12 Juni 2021
Peer-Review-StatusJa

Konferenz

Titel2020 6th IEEE Congress on Information Science and Technology (CiSt)
Dauer5 - 12 Juni 2021
OrtAgadir - Essaouira, Morocco

Externe IDs

Scopus 85103811992
Ieee 10.1109/CiSt49399.2021.9357189
ORCID /0000-0001-9756-6390/work/142250120

Schlagworte

Schlagwörter

  • Annotations, Information science, Neural networks, Optimization, Training, Training data, Transfer learning, NER, Named Entity Recognition, natural language processing, transfer learning