Continuous Inference of Time Recurrent Neural Networks for Field Oriented Control

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Felix Kreutz - , Infineon Technologies AG (Autor:in)
  • Daniel Scholz - , Infineon Technologies AG (Autor:in)
  • Julian Hille - , Infineon Technologies AG (Autor:in)
  • Huang Jiaxin - , Infineon Technologies AG (Autor:in)
  • Florian Hauer - , Infineon Technologies AG (Autor:in)
  • Klaus Knobloch - , Infineon Technologies AG (Autor:in)
  • Christian Georg Mayr - , Professur für Hochparallele VLSI-Systeme und Neuromikroelektronik (Autor:in)

Abstract

Deep recurrent networks can be computed as an unrolled computation graph in a defined time window. In theory, the unrolled network and a continuous time recurrent computation are equivalent. However, we encountered a shift in accuracy for models based on LSTM-/GRU- and SNN-cells during the switch from unrolled computation during training towards a continuous stateful inference without state resets. In this work, we evaluate these time recurrent neural network approaches based on the error created by using a time continuous inference. This error would be small in case of good time domain generalization and we can show that some training setups are favourable for that with the chosen example use case. A real time critical motor position prediction use case is chosen as a reference. This task can be phrased as a time series regression problem. A time continuous stateful inference for time recurrent neural networks benefits an embedded systems by reduced need of compute resources.

Details

OriginalspracheEnglisch
Titel2023 IEEE Conference on Artificial Intelligence (CAI)
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten266-269
Seitenumfang4
ISBN (elektronisch)979-8-3503-3984-0
ISBN (Print)979-8-3503-3985-7
PublikationsstatusVeröffentlicht - 6 Juni 2023
Peer-Review-StatusJa

Konferenz

Titel2023 IEEE Conference on Artificial Intelligence
KurztitelCAI 2023
Dauer5 - 6 Juni 2023
Webseite
OrtHyatt Regency Santa Clara
StadtSanta Clara
LandUSA/Vereinigte Staaten

Externe IDs

Ieee 10.1109/CAI54212.2023.00119

Schlagworte

Schlagwörter

  • Edge AI, Recurrent Neural Networks, Spiking Neural Networks