Contact angle at the leading edge controls cell protrusion rate

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Chiara Gabella - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Elena Bertseva - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Céline Bottier - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Niccolò Piacentini - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Alicia Bornert - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Sylvia Jeney - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • László Forró - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Ivo F. Sbalzarini - , Professur für Wissenschaftliches Rechnen für Systembiologie, Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Jean Jacques Meister - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Alexander B. Verkhovsky - , École Polytechnique Fédérale de Lausanne (Autor:in)

Abstract

Plasma membrane tension and the pressure generated by actin polymerization are two antagonistic forces believed to define the protrusion rate at the leading edge of migrating cells [1-5]. Quantitatively, resistance to actin protrusion is a product of membrane tension and mean local curvature (Laplace's law); thus, it depends on the local geometry of the membrane interface. However, the role of the geometry of the leading edge in protrusion control has not been yet investigated. Here, we manipulate both the cell shape and substrate topography in the model system of persistently migrating fish epidermal keratocytes. We find that the protrusion rate does not correlate with membrane tension, but, instead, strongly correlates with cell roundness, and that the leading edge of the cell exhibits pinning on substrate ridges - a phenomenon characteristic of spreading of liquid drops. These results indicate that the leading edge could be considered a triple interface between the substrate, membrane, and extracellular medium and that the contact angle between the membrane and the substrate determines the load on actin polymerization and, therefore, the protrusion rate. Our findings thus illuminate a novel relationship between the 3D shape of the cell and its dynamics, which may have implications for cell migration in 3D environments.

Details

OriginalspracheEnglisch
Seiten (von - bis)1126-1132
Seitenumfang7
FachzeitschriftCurrent biology
Jahrgang24
Ausgabenummer10
PublikationsstatusVeröffentlicht - 19 Mai 2014
Peer-Review-StatusJa

Externe IDs

PubMed 24794299
ORCID /0000-0003-4414-4340/work/159608279