Classification of Photo-Acoustic Emission in Direct Laser Interference Pattering for Identifying the Spatial Period

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Tobias Steege - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Adrian Belkin - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Christoph Zwahr - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Andres F. Lasagni - , Professur für Laserbasierte Fertigung, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)

Abstract

Direct Laser Interference Patterning (DLIP) is a versatile tool used to produce microstructures for functionalized surfaces on different materials. However, monitoring strategies are needed to ensure repeatability and quality control during the fabrication of surface patterns with micro- and submicron resolution features. This study proposes a new approach for identifying the spatial period on the surface using airborne acoustic emission during DLIP. The acoustic emission parameters from a single laser pulse on the material are analyzed using different prediction algorithms to classify and compare different spatial periods. Line-like patterns were produced on aluminum substrates using a pulsed laser source, and the laser fluence was varied to obtain variation in the data set. The preliminary results show that the four algorithms can detect and identify the spatial period for different laser fluences with an accuracy of up to 96%. This approach could be used for an automated setup workflow and eliminates the need for manual measurement of this parameter. It is an important step towards a fully automated initialization of surface processing in the micrometer range.

Details

OriginalspracheEnglisch
Seiten (von - bis)34-39
Seitenumfang6
FachzeitschriftJournal of laser micro nanoengineering
Jahrgang19
Ausgabenummer1
PublikationsstatusVeröffentlicht - Feb. 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85194500112

Schlagworte

Schlagwörter

  • Acoustic emission, Direct Laser Interference Patterning (DLIP), Functionalized surfaces, Microstructures, Monitoring strategies, Prediction algorithms