Classification of human gliomas by infrared imaging spectroscopy and chemometric image processing

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • C. Beleites - , Technische Universität Dresden (Autor:in)
  • G. Steiner - , Professur für Bioanalytische Chemie (AnC1) (Autor:in)
  • M. G. Sowa - , National Research Council of Canada (Autor:in)
  • R. Baumgartner - , National Research Council of Canada (Autor:in)
  • S. Sobottka - , Klinik und Poliklinik für Neurochirurgie (Autor:in)
  • G. Schackert - , Technische Universität Dresden (Autor:in)
  • R. Salzer - , Technische Universität Dresden (Autor:in)

Abstract

As a molecular probe of tissue composition, infrared spectroscopic imaging can potentially serve as an adjunct to histopathology in detecting and diagnosing disease. This study demonstrates that human gliomas are distinguishable from control tissue on the basis of IR image used in combination with chemometric imaging processing. Using an iterative two-step algorithm - comprised of a linear discriminant analysis guided genetic optimal spectral region selection - tissue types can be discriminated from one another thus providing insight into the malignancy grade of the tissue. A series of classification models were built using a k-fold cross validation scheme and the classification predictions from the various models were combined to provide an aggregated prediction. The validation of the aggregated model reveals an improvement in the classification success rate to 64%.

Details

OriginalspracheEnglisch
Seiten (von - bis)143-149
Seitenumfang7
Fachzeitschrift Vibrational spectroscopy : section of Analytica chimica acta ; an international journal devoted to applications of infrared and raman spectroscopy
Jahrgang38
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - 29 Juli 2005
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-7625-343X/work/150881433

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • Brain tumors, Chemometric imaging, Classification, Combining classifiers, Grading, Infrared spectroscopic imaging, Small sample size, Validation