Classical mathematical models for prediction of response to chemotherapy and immunotherapy

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Narmin Ghaffari Laleh - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Chiara Maria Lavinia Loeffler - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Julia Grajek - , Polish Academy of Sciences (Autor:in)
  • Kateřina Staňková - , Technische Universität Delft (Autor:in)
  • Alexander T. Pearson - , The University of Chicago (Autor:in)
  • Hannah Sophie Muti - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Christian Trautwein - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Heiko Enderling - , University of South Florida (Autor:in)
  • Jan Poleszczuk - , Polish Academy of Sciences, Maria Sklodowska-Curie Institute of Oncology (Autor:in)
  • Jakob Nikolas Kather - , Rheinisch-Westfälische Technische Hochschule Aachen, Universität Heidelberg (Autor:in)

Abstract

Classical mathematical models of tumor growth have shaped our understanding of cancer and have broad practical implications for treatment scheduling and dosage. However, even the simplest textbook models have been barely validated in real world-data of human patients. In this study, we fitted a range of differential equation models to tumor volume measurements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors. We used a large dataset of 1472 patients with three or more measurements per target lesion, of which 652 patients had six or more data points. We show that the early treatment response shows only moderate correlation with the final treatment response, demonstrating the need for nuanced models. We then perform a head-to-head comparison of six classical models which are widely used in the field: The Exponential, Logistic, Classic Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. Several models provide a good fit to tumor volume measurements, with the Gompertz model providing the best balance between goodness of fit and number of parameters. Similarly, when fitting to early treatment data, the general Bertalanffy and Gompertz models yield the lowest mean absolute error to forecasted data, indicating that these models could potentially be effective at predicting treatment outcome. In summary, we provide a quantitative benchmark for classical textbook models and state-of-the art models of human tumor growth. We publicly release an anonymized version of our original data, providing the first benchmark set of human tumor growth data for evaluation of mathematical models.

Details

OriginalspracheEnglisch
Aufsatznummere1009822
FachzeitschriftPLOS computational biology
Jahrgang18
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2022
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 35120124