Characterisation of the Rheological Behaviour of a Resource-Saving Sustainable Concrete in the context of 3D printing
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Buch/Sammelband/Gutachten › Beigetragen › Begutachtung
Beitragende
Abstract
In recent years, digital construction methods, such as 3D-printing with concrete, have seen a surge in interest. They address many challenges currently encountered in the construction industry. However, for the digital construction to be successful, both in terms of sustainability and cost-effectiveness, the 3D printable materials must fulfil high requirements, particularly regarding their rheological and mechanical properties. The use of environmentally friendly materials with low clinker content, such as Limestone-Calcined-Clay-Cement (LC3), could further reduce the carbon footprint of these processes. Additionally, integrating recycled aggregate into the 3D printable mix (Printable Recycled Aggregate Concrete: PRAC) could promote resource conservation, environmental protection, and energy efficiency. This study investigates the time-dependent development of the static yield stress and the structural build-up by means of a rapid penetration test and a newly proposed modified cone geometry. These tests enable to realistically describe the material behaviour of new, environmentally friendly 3D printable mixtures with coarse aggregates. The results attained provide a foundation for future efforts to use demolition materials more efficiently in 3D concrete printing.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Fourth RILEM International Conference on Concrete and Digital Fabrication |
| Herausgeber (Verlag) | Springer Science and Business Media B.V. |
| Seiten | 22-29 |
| Seitenumfang | 8 |
| ISBN (elektronisch) | 978-3-031-70031-6 |
| ISBN (Print) | 978-3-031-70030-9, 978-3-031-70033-0 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | RILEM Bookseries |
|---|---|
| Band | 53 |
| ISSN | 2211-0844 |
Externe IDs
| ORCID | /0009-0009-8930-7036/work/180883012 |
|---|
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- 3D concrete printing, Limestone Calcined Clay Cement, Recycled aggregates, Rheology of fresh concrete