Challenges and Perspectives for Energy-efficient Brain-inspired Edge Computing Applications (Invited Paper)

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandEingeladenBegutachtung

Beitragende

  • Erika Covi - , Technische Universität Dresden (Autor:in)
  • Suzanne Lancaster - , Technische Universität Dresden (Autor:in)
  • Stefan Slesazeck - , Technische Universität Dresden (Autor:in)
  • Veeresh Deshpande - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Thomas Mikolajick - , Professur für Nanoelektronik (Autor:in)
  • Catherine Dubourdieu - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Freie Universität (FU) Berlin (Autor:in)

Abstract

In recent years, Artificial Intelligence has shifted towards edge computing paradigm, where systems compute data in real-time on the edge of the network, close to the sensor that acquires them. The requirements of a system operating on the edge are very tight: power efficiency, low area footprint, fast response times, and online learning. Moreover, in order to fully optimise sensor performance and broaden applications by developing smart wearable and implantable devices, solutions must be compatible with flexible substrates. Brain-inspired architectures such as Spiking Neural Networks (SNNs) use artificial neurons and synapses that perform low-latency computation and internal-state storage simultaneously with very low power consumption. However, SNNs at present are mainly implemented on standard CMOS technologies, which makes it challenging to meet the above-mentioned constraints. In this respect, memristive technology has shown promising results, due to its ability to support fast and energy-efficient non-volatile storage of the SNN parameters in a nanoscale footprint. In this perspective work, the main challenges to achieve a neuromorphic-memristive hardware are presented, particularly in the context of optimising such systems for applications on the edge. The aspects to be considered for integration with flexible substrates will also be discussed.

Details

OriginalspracheEnglisch
Titel2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
ISBN (elektronisch)978-1-6654-4273-2
ISBN (Print)978-1-6654-4274-9
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)

Konferenz

Titel4th IEEE International Conference on Flexible and Printable Sensors and Systems
KurztitelFLEPS 2022
Veranstaltungsnummer4
Dauer10 - 13 Juli 2022
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtTechnische Universität Wien
StadtWien
LandÖsterreich

Externe IDs

ORCID /0000-0003-3814-0378/work/142256152