ω-categorical structures avoiding height 1 identities

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Manuel Bodirsky - , Professur für Algebra und Diskrete Strukturen (Autor:in)
  • Antoine Mottet - , Karlsuniversität Prag (Autor:in)
  • Miroslav Olšák - , Karlsuniversität Prag (Autor:in)
  • Jakub Opršal - , Durham University (Autor:in)
  • Michael Pinsker - , Karlsuniversität Prag, Technische Universitat Wien (Autor:in)
  • Ross Willard - , University of Waterloo (Autor:in)

Abstract

The algebraic dichotomy conjecture for Constraint Satisfaction Problems (CSPs) of reducts of (infinite) finitely bounded homogeneous structures states that such CSPs are polynomial-time tractable if the model-complete core of the template has a pseudo-Siggers polymorphism, and is NP-complete otherwise. One of the important questions related to the dichotomy conjecture is whether, similarly to the case of finite structures, the condition of having a pseudo-Siggers polymorphism can be replaced by the condition of having polymorphisms satisfying a fixed set of identities of height 1, i.e., identities which do not contain any nesting of functional symbols. We provide a negative answer to this question by constructing for each nontrivial set of height 1 identities a structure within the range of the conjecture whose polymorphisms do not satisfy these identities, but whose CSP is tractable nevertheless. An equivalent formulation of the dichotomy conjecture characterizes tractability of the CSP via the local satisfaction of nontrivial height 1 identities by polymorphisms of the structure. We show that local satisfaction and global satisfaction of nontrivial height 1 identities differ for ω-categorical structures with less than doubly exponential orbit growth, thereby resolving one of the main open problems in the algebraic theory of such structures.

Details

OriginalspracheEnglisch
Seiten (von - bis)327-350
Seitenumfang24
FachzeitschriftTransactions of the American Mathematical Society
Jahrgang374
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2021
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8228-3611/work/142241074

Schlagworte

Schlagwörter

  • Complexity dichotomy, Constraint satisfaction problem, Finite boundedness, Homogeneous structure, Mal'cev condition, Nonnested identity, Orbit growth, Pointwise convergence topology, ω-categoricity