Calibration-free quantitative phase imaging in multi-core fiber endoscopes using end-to-end deep learning

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jiawei Sun - , Shanghai Artificial Intelligence Laboratory (Autor:in)
  • Bin Zhao - , Shanghai Artificial Intelligence Laboratory, Northwestern Polytechnical University Xian (Autor:in)
  • Dong Wang - , Shanghai Artificial Intelligence Laboratory (Autor:in)
  • Zhigang Wang - , Shanghai Artificial Intelligence Laboratory (Autor:in)
  • Jie Zhang - , Shanghai Artificial Intelligence Laboratory, Technische Universität Dresden (Autor:in)
  • Nektarios Koukourakis - , Professur für Mess- und Sensorsystemtechnik (Autor:in)
  • Júergen W. Czarske - , Professur für Mess- und Sensorsystemtechnik (Autor:in)
  • Xuelong Li - , Shanghai Artificial Intelligence Laboratory, Northwestern Polytechnical University Xian (Autor:in)

Abstract

Quantitative phase imaging (QPI) through multi-core fibers (MCFs) has been an emerging in vivo label-free endoscopic imaging modality with minimal invasiveness. However, the computational demands of conventional iterative phase retrieval algorithms have limited their real-time imaging potential. We demonstrate a learning-based MCF phase imaging method that significantly reduced the phase reconstruction time to 5.5 ms, enabling video-rate imaging at 181 fps. Moreover, we introduce an innovative optical system that automatically generated the first, to the best of our knowledge, open-source dataset tailored for MCF phase imaging, comprising 50,176 paired speckles and phase images. Our trained deep neural network (DNN) demonstrates a robust phase reconstruction performance in experiments with a mean fidelity of up to 99.8%. Such an efficient fiber phase imaging approach can broaden the applications of QPI in hard-to-reach areas.

Details

OriginalspracheEnglisch
Seiten (von - bis)342-345
Seitenumfang4
FachzeitschriftOptics letters
Jahrgang49
Ausgabenummer2
PublikationsstatusVeröffentlicht - 15 Jan. 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38194563

Schlagworte