Boosting Oxygen Electrocatalytic Activity of Fe-N-C Catalysts by Phosphorus Incorporation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Yazhou Zhou - , Max-Planck-Institut für Polymerforschung, Jiangsu University (Autor:in)
  • Ruihu Lu - , Wuhan University of Technology (Autor:in)
  • Xiafang Tao - , Max-Planck-Institut für Polymerforschung, Jiangsu University (Autor:in)
  • Zijie Qiu - , Max-Planck-Institut für Polymerforschung, The Chinese University of Hong Kong, Shenzhen (Autor:in)
  • Guangbo Chen - , Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Juan Yang - , Jiangsu University (Autor:in)
  • Yan Zhao - , Wuhan University of Technology (Autor:in)
  • Xinliang Feng - , Professur für Molekulare Funktionsmaterialien (cfaed), Max Planck Institute of Microstructure Physics (Autor:in)
  • Klaus Müllen - , Max-Planck-Institut für Polymerforschung (Autor:in)

Abstract

Nitrogen-doped graphitic carbon materials hosting single-atom iron (Fe-N-C) are major non-precious metal catalysts for the oxygen reduction reaction (ORR). The nitrogen-coordinated Fe sites are described as the first coordination sphere. As opposed to the good performance in ORR, that in the oxygen evolution reaction (OER) is extremely poor due to the sluggish O-O coupling process, thus hampering the practical applications of rechargeable zinc (Zn)-air batteries. Herein, we succeed in boosting the OER activity of Fe-N-C by additionally incorporating phosphorus atoms into the second coordination sphere, here denoted as P/Fe-N-C. The resulting material exhibits excellent OER activity in 0.1 M KOH with an overpotential as low as 304 mV at a current density of 10 mA cm-2. Even more importantly, they exhibit a remarkably small ORR/OER potential gap of 0.63 V. Theoretical calculations using first-principles density functional theory suggest that the phosphorus enhances the electrocatalytic activity by balancing the*OOH/*O adsorption at the FeN4 sites. When used as an air cathode in a rechargeable Zn-air battery, P/Fe-N-C delivers a charge-discharge performance with a high peak power density of 269 mW cm-2, highlighting its role as the state-of-the-art bifunctional oxygen electrocatalyst.

Details

OriginalspracheEnglisch
Seiten (von - bis)3647-3655
Seitenumfang9
FachzeitschriftJournal of the American Chemical Society
Jahrgang145
Ausgabenummer6
PublikationsstatusVeröffentlicht - 15 Feb. 2023
Peer-Review-StatusJa

Externe IDs

PubMed 36744313
WOS 000928853600001

Schlagworte

Forschungsprofillinien der TU Dresden

Schlagwörter

  • Single-atom catalysts, Air batteries, Reduction, Sites, Evolution, Performance, Design, Iron, Identification, Graphene