BiKA: Binarized KAN-inspired Neural Network for Efficient Hardware Accelerator Designs

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

The continuously growing size of Neural Network (NN) models makes the design of lightweight neural network accelerators for edge devices an emerging subject in recent research. Previous works explored different lightweight technologies or even emerging neural network structures, such as quantization, approximate computing, neuromorphic computing, etc., to reduce hardware resource consumption in accelerator designs. This inspired our interest in exploring the potential of other emerging network structures in hardware accelerator designs. Kolmogorov-Arnold Network (KAN) [1] is a recently proposed novel neural network structure by replacing the multiplication and activation function in Artificial Neural Networks (ANN) with learnable nonlinear functions, which has the potential to transform the paradigm of neural network design. However, considering the complexity of the nonlinear function on hardware, the design of the lightweight hardware accelerator of KAN lacks thoroughly related research.

Details

OriginalspracheEnglisch
TitelProceedings - 2025 IEEE 33rd Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM 2025
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten276
Seitenumfang1
ISBN (elektronisch)979-8-3315-0281-2
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheAnnual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM)
ISSN2576-2613

Konferenz

Titel33rd IEEE Annual International Symposium on Field-Programmable Custom Computing Machines
KurztitelFCCM 2025
Veranstaltungsnummer33
Dauer4 - 7 Mai 2025
Webseite
OrtGraduate Hotel
StadtFayetteville
LandUSA/Vereinigte Staaten

Schlagworte

Schlagwörter

  • approximate computing, fpga, hardware accelerator, kolmogorov-arnold network