Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.

Details

OriginalspracheEnglisch
Titel2023 IEEE 97th Vehicular Technology Conference, VTC 2023-Spring - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seitenumfang5
ISBN (elektronisch)979-8-3503-1114-3
ISBN (Print)979-8-3503-1115-0
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Conference on Vehicular Technology (VTC)
Band2023-June
ISSN1550-2252

Konferenz

Titel97th IEEE Vehicular Technology Conference
KurztitelVTC 2023-Spring
Veranstaltungsnummer97
Dauer20 - 23 Juni 2023
Webseite
OrtFirenzefiera Congress and Exhibition Center & online
StadtFlorence
LandItalien

Externe IDs

ORCID /0000-0001-8722-6106/work/159171556
ORCID /0000-0001-8469-9573/work/161891140

Schlagworte

Schlagwörter

  • automotive connectivity, Dataset, drive tests, LTE, machine learning, QoS prediction, sidelink, V2X