Automatic detection of voltage notches using support vector machine
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
This paper presents a comprehensive framework for voltage notch analysis and an automatic method for notch detection using a nonlinear support vector machine (SVM) classifier. A comprehensive simulation of the notch disturbance has been conducted to generate a diverse database. Based on domain knowledge and properties of power quality disturbances (PQDs), a set of characteristic features is extracted. After feature extraction, a set of most descriptive features has been selected with decision tree (DT) algorithm, and a nonlinear SVM classifier has been trained. Finally, the detection efficiency of the trained model is presented and discussed.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 528-533 |
Seitenumfang | 6 |
Fachzeitschrift | Renewable energy & power quality journal |
Jahrgang | 19 |
Publikationsstatus | Veröffentlicht - 1 Sept. 2021 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85114692002 |
---|
Schlagworte
Schlagwörter
- Decision tree, Feature extraction, Power quality, Support vector machine, Voltage notch