Automatic detection of voltage notches using support vector machine

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

This paper presents a comprehensive framework for voltage notch analysis and an automatic method for notch detection using a nonlinear support vector machine (SVM) classifier. A comprehensive simulation of the notch disturbance has been conducted to generate a diverse database. Based on domain knowledge and properties of power quality disturbances (PQDs), a set of characteristic features is extracted. After feature extraction, a set of most descriptive features has been selected with decision tree (DT) algorithm, and a nonlinear SVM classifier has been trained. Finally, the detection efficiency of the trained model is presented and discussed.

Details

OriginalspracheEnglisch
Seiten (von - bis)528-533
Seitenumfang6
FachzeitschriftRenewable energy & power quality journal
Jahrgang19
PublikationsstatusVeröffentlicht - 1 Sept. 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85114692002

Schlagworte

Schlagwörter

  • Decision tree, Feature extraction, Power quality, Support vector machine, Voltage notch