Automated Generation of Conditional Moment Equations for Stochastic Reaction Networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Hanna Josephine Wiederanders - , Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Anne Lena Moor - , Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Christoph Zechner - , Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden, Exzellenzcluster PoL: Physik des Lebens (Autor:in)

Abstract

The dynamics of biochemical reaction networks require a stochastic description when copy number fluctuations become significant. Such description is provided by moment equations that capture the statistical properties of the involved molecular components such as their average abundance and variability. Certain applications require a special form of moment equations, where the statistics of some components are described conditionally on complete trajectories of other components. Typical examples include information theoretical analyses of biochemical networks, model reduction and subnetwork simulation, or statistical inference where time-varying molecular signals are inferred from counting observations. These conditional moment equations have so far been limited to relatively simple reaction systems as their manual derivation becomes difficult for systems involving many components and interactions. Here, we present a Python tool for the automated derivation of moment equations conditional on complete time trajectories for arbitrary user-defined reaction systems and showcase its utility in the context of subnetwork simulation. With this automated tool, conditional moment equations become applicable to a broad class of biochemical systems.

Details

OriginalspracheEnglisch
TitelComputational Methods in Systems Biology - 20th International Conference, CMSB 2022, Proceedings
Redakteure/-innenIon Petre, Andrei Păun
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten286-293
Seitenumfang8
ISBN (Print)9783031150333
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13447 LNBI
ISSN0302-9743

Konferenz

Titel20th International Conference on Computational Methods in Systems Biology
KurztitelCMSB 2022
Veranstaltungsnummer20
Dauer14 - 16 September 2022
OrtUniversity of Bucharest
StadtBucharest
LandRumänien

Schlagworte

Schlagwörter

  • Conditional moments, Moment generator, Stochastic biochemical networks