Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors: Process Development, Film Characterization, and Gas Sensing Properties

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Miika Mattinen - , University of Helsinki (Autor:in)
  • Jan Lucas Wree - , Ruhr-Universität Bochum (Autor:in)
  • Niklas Stegmann - , Ruhr-Universität Bochum (Autor:in)
  • Engin Ciftyurek - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Mhamed El Achhab - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Peter J. King - , University of Helsinki (Autor:in)
  • Kenichiro Mizohata - , University of Helsinki (Autor:in)
  • Jyrki Räisänen - , University of Helsinki (Autor:in)
  • Klaus D. Schierbaum - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Anjana Devi - , Ruhr-Universität Bochum (Autor:in)
  • Mikko Ritala - , University of Helsinki (Autor:in)
  • Markku Leskelä - , University of Helsinki (Autor:in)

Abstract

Heteroleptic bis(tert-butylimido)bis(N,N′-diisopropylacetamidinato) compounds of molybdenum and tungsten are introduced as precursors for atomic layer deposition of tungsten and molybdenum oxide thin films using ozone as the oxygen source. Both precursors have similar thermal properties but exhibit different growth behaviors. With the molybdenum precursor, high growth rates up to 2 Å/cycle at 300 °C and extremely uniform films are obtained, although the surface reactions are not completely saturative. The corresponding tungsten precursor enables saturative film growth with a lower growth rate of 0.45 Å/cycle at 300 °C. Highly pure films of both metal oxides are deposited, and their phase as well as stoichiometry can be tuned by changing the deposition conditions. The WOx films crystallize as γ-WO3 at 300 °C and above, whereas the films deposited at lower temperatures are amorphous. Molybdenum oxide can be deposited as either amorphous (≤250 °C), crystalline suboxide (275 °C), a mixture of suboxide and α-MoO3 (300 °C), or pure α-MoO3 (≥325 °C) films. MoOx films are further characterized by synchrotron photoemission spectroscopy and temperature-dependent resistivity measurements. A suboxide MoOx film deposited at 275 °C is demonstrated to serve as an efficient hydrogen gas sensor at a low operating temperature of 120 °C.

Details

OriginalspracheEnglisch
Seiten (von - bis)8690-8701
Seitenumfang12
FachzeitschriftChemistry of materials
Jahrgang30
Ausgabenummer23
PublikationsstatusVeröffentlicht - 11 Dez. 2018
Peer-Review-StatusJa
Extern publiziertJa