Artificial intelligence-based biomarkers for treatment decisions in oncology

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

Abstract

The development of new therapeutic strategies such as immune checkpoint inhibitors (ICIs) and targeted therapies has increased the complexity of the treatment landscape for solid tumors. At the current rate of annual FDA approvals, the potential treatment options could increase by tenfold over the next 5 years. The cost of personalized medicine technologies limits its accessibility, thus increasing socioeconomic disparities in the treated population. In this review we describe artificial intelligence (AI)-based solutions – including deep learning (DL) methods for routine medical imaging and large language models (LLMs) for electronic health records (EHRs) – to support cancer treatment decisions with cost-effective biomarkers. We address the current limitations of these technologies and propose the next steps towards their adoption in routine clinical practice.

Details

OriginalspracheEnglisch
Seiten (von - bis)232-244
Seitenumfang13
FachzeitschriftTrends in cancer
Jahrgang11
Ausgabenummer3
PublikationsstatusVeröffentlicht - März 2025
Peer-Review-StatusJa

Externe IDs

PubMed 39814650
ORCID /0000-0002-3730-5348/work/198594659

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • artificial intelligence, biomarkers, medical imaging, oncology, personalized medicine