Artificial intelligence-based biomarkers for treatment decisions in oncology
Publikation: Beitrag in Fachzeitschrift › Übersichtsartikel (Review) › Beigetragen › Begutachtung
Beitragende
Abstract
The development of new therapeutic strategies such as immune checkpoint inhibitors (ICIs) and targeted therapies has increased the complexity of the treatment landscape for solid tumors. At the current rate of annual FDA approvals, the potential treatment options could increase by tenfold over the next 5 years. The cost of personalized medicine technologies limits its accessibility, thus increasing socioeconomic disparities in the treated population. In this review we describe artificial intelligence (AI)-based solutions – including deep learning (DL) methods for routine medical imaging and large language models (LLMs) for electronic health records (EHRs) – to support cancer treatment decisions with cost-effective biomarkers. We address the current limitations of these technologies and propose the next steps towards their adoption in routine clinical practice.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 232-244 |
| Seitenumfang | 13 |
| Fachzeitschrift | Trends in cancer |
| Jahrgang | 11 |
| Ausgabenummer | 3 |
| Publikationsstatus | Veröffentlicht - März 2025 |
| Peer-Review-Status | Ja |
Externe IDs
| PubMed | 39814650 |
|---|---|
| ORCID | /0000-0002-3730-5348/work/198594659 |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- artificial intelligence, biomarkers, medical imaging, oncology, personalized medicine