Application of the RIMARC algorithm to a large data set of action potentials and clinical parameters for risk prediction of atrial fibrillation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ursula Ravens - , Institut für Pharmakologie und Toxikologie (Autor:in)
  • Deniz Katircioglu-Öztürk - , Middle East Technical University, Medical Information Technology Solutions (Autor:in)
  • Erich Wettwer - , Institut für Pharmakologie und Toxikologie (Autor:in)
  • Torsten Christ - , Institut für Pharmakologie und Toxikologie (Autor:in)
  • Dobromir Dobrev - , Institut für Pharmakologie und Toxikologie (Autor:in)
  • Niels Voigt - , Institut für Pharmakologie und Toxikologie (Autor:in)
  • Claire Poulet - , Institut für Pharmakologie und Toxikologie (Autor:in)
  • Simone Loose - , Institut für Pharmakologie und Toxikologie (Autor:in)
  • Jana Simon - , Institut für Pharmakologie und Toxikologie (Autor:in)
  • Agnes Stein - , Herzzentrum Dresden GmbH – Universitätsklinik (Autor:in)
  • Klaus Matschke - , Klinik für Kardiochirurgie (am Herzzentrum) (Autor:in)
  • Michael Knaut - , Klinik für Kardiochirurgie (am Herzzentrum) (Autor:in)
  • Emre Oto - , Medical Information Technology Solutions (Autor:in)
  • Ali Oto - , Hacettepe University (Autor:in)
  • H. Altay Güvenir - , Bilkent University (Autor:in)

Abstract

Ex vivo recorded action potentials (APs) in human right atrial tissue from patients in sinus rhythm (SR) or atrial fibrillation (AF) display a characteristic spike-and-dome or triangular shape, respectively, but variability is huge within each rhythm group. The aim of our study was to apply the machine-learning algorithm ranking instances by maximizing the area under the ROC curve (RIMARC) to a large data set of 480 APs combined with retrospectively collected general clinical parameters and to test whether the rules learned by the RIMARC algorithm can be used for accurately classifying the preoperative rhythm status. APs were included from 221 SR and 158 AF patients. During a learning phase, the RIMARC algorithm established a ranking order of 62 features by predictive value for SR or AF. The model was then challenged with an additional test set of features from 28 patients in whom rhythm status was blinded. The accuracy of the risk prediction for AF by the model was very good (0.93) when all features were used. Without the seven AP features, accuracy still reached 0.71. In conclusion, we have shown that training the machine-learning algorithm RIMARC with an experimental and clinical data set allows predicting a classification in a test data set with high accuracy. In a clinical setting, this approach may prove useful for finding hypothesis-generating associations between different parameters.

Details

OriginalspracheEnglisch
Seiten (von - bis)263-273
Seitenumfang11
FachzeitschriftMedical and Biological Engineering and Computing
Jahrgang53
Ausgabenummer3
PublikationsstatusVeröffentlicht - März 2015
Peer-Review-StatusJa

Externe IDs

PubMed 25466224

Schlagworte

Schlagwörter

  • Atrial fibrillation, Clinical parameters, Human right atrial action potentials, RIMARC algorithm, Risk prediction