Anode-Protective Covalent Organic Framework Layer with Synergistic Cation–Anion Regulation for Dendrite-Free Lithium Metal Batteries

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Shuang Zheng - , CAS - Shanghai Advanced Research Institute, University of Chinese Academy of Sciences (UCAS) (Autor:in)
  • Yubin Fu - , Center for Advancing Electronics Dresden (cfaed), Professur für Molekulare Funktionsmaterialien (cfaed), Southeast University, Nanjing (Autor:in)
  • Cheng Song - , Shanghai University (Autor:in)
  • Chunlei Wang - , Shanghai University (Autor:in)
  • Yang Wu - , Shanghai University (Autor:in)
  • Shenggang Li - , CAS - Shanghai Advanced Research Institute, University of Chinese Academy of Sciences (UCAS) (Autor:in)
  • Qing Xu - , CAS - Shanghai Advanced Research Institute, University of Chinese Academy of Sciences (UCAS) (Autor:in)
  • Joseph S. Francisco - , University of Pennsylvania (Autor:in)
  • Gaofeng Zeng - , CAS - Shanghai Advanced Research Institute, University of Chinese Academy of Sciences (UCAS) (Autor:in)

Abstract

Lithium (Li) dendrite formation in Li metal batteries intrinsically challenges Coulombic efficiency (CE) and safety. While constructing an anode protective layer offers a potential solution for dendrite suppression, existing approaches are limited by insufficient molecular-level control over both Li+and anion dynamics simultaneously. Herein, we construct a binary cooperative magnesium porphyrin-based covalent organic framework (Mg-Por-COF) protective layer designed for synergetic cation–anion regulation at the anode–electrolyte interface. This design spatially separates lithiophilic and anionophilic sites within the pore walls and framework. Specifically, Mg-Por-COF promotes Li+desolvation through strong interactions and immobilizes TFSIanions via Mg2+coordination. This dual action prevents space charge accumulation caused by local anion depletion, enabling smooth and compact Li deposition, even under a demanding areal current of 10 mA cm–2. Consequently, the Li/Mg-Por-COF-Cu cell achieves an extended cycle life of 400 cycles with a high average CE of 98.3%, outperforming the bare Cu counterpart by ∼400%. Furthermore, the LiFePO4/Mg-Por-COF-Li full cell demonstrates remarkable cycling stability with an average CE of 99.1% over 324 cycles. Simulations corroborate the dual role of Mg-Por-COF in modulating Li+transport and immobilizing TFSIanions, providing unique atomic control for Li uniform deposition. These findings highlight the potential of structurally designed COFs as superior protective layers for high-performance energy storage, offering high chemical designability and sustainability.

Details

OriginalspracheEnglisch
Seiten (von - bis)31249-31259
Seitenumfang11
FachzeitschriftJournal of the American Chemical Society
Jahrgang147
Ausgabenummer34
PublikationsstatusVeröffentlicht - 27 Aug. 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40802471