An in situ crack detection approach in additive manufacturing based on acoustic emission and machine learning

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Denys Y. Kononenko - , Professur für Festkörpertheorie (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Viktoriia Nikonova - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Mikhail Seleznev - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Jeroen van den Brink - , Professur für Festkörpertheorie (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Dmitry Chernyavsky - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

The use of additive manufacturing (AM) and its particular realization – laser powder bed fusion (L-PBF) – is on the rise. However, the method is not free from flaws, mainly represented by structural defects of the printed specimen, such as cracks and pores, requiring processing monitoring. In this work, we propose a concept of the in situ crack detection system for AM fabricated parts based on acoustic emission (AE) signal and machine learning (ML) methods. The detection implies the differentiation of crack AE events from background noise sound. We construct classification ML models and show that they reach the highest classification accuracy, up to 99%, for events represented in the space of spectra principal components. The presented in situ crack detection approach can be easily implemented or used as a basis for a more sophisticated detection procedure.

Details

OriginalspracheEnglisch
Aufsatznummer100130
FachzeitschriftAdditive Manufacturing Letters
Jahrgang5
PublikationsstatusVeröffentlicht - Apr. 2023
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Acoustic emission, Additive manufacturing, In situ quality control, Laser powder bed fusion, Machine learning, Principal component analysis