Adversarial Continual Learning
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Continual learning aims to learn new tasks without forgetting previously learned ones. We hypothesize that representations learned to solve each task in a sequence have a shared structure while containing some task-specific properties. We show that shared features are significantly less prone to forgetting and propose a novel hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features required to solve a sequence of tasks. Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills. We demonstrate our hybrid approach is effective in avoiding forgetting and show it is superior to both architecture-based and memory-based approaches on class incrementally learning of a single dataset as well as a sequence of multiple datasets in image classification. Our code is available at https://github.com/facebookresearch/Adversarial-Continual-Learning.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings |
| Redakteure/-innen | Andrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm |
| Herausgeber (Verlag) | Springer, Berlin [u. a.] |
| Seiten | 386-402 |
| Seitenumfang | 17 |
| ISBN (Print) | 9783030586201 |
| Publikationsstatus | Veröffentlicht - 2020 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Lecture Notes in Computer Science, Volume 12356 |
|---|---|
| ISSN | 0302-9743 |
Konferenz
| Titel | 16th European Conference on Computer Vision, ECCV 2020 |
|---|---|
| Dauer | 23 - 28 August 2020 |
| Stadt | Glasgow |
| Land | Großbritannien/Vereinigtes Königreich |
Externe IDs
| ORCID | /0000-0001-9430-8433/work/146646289 |
|---|