Advanced glass fiber polymer composite laminate operating as a thermoelectric generator: A structural device for micropower generation and potential large-scale thermal energy harvesting

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • George Karalis - , University of Ioannina (Erstautor:in)
  • Lazaros Tzounis - , University of Ioannina (Autor:in)
  • Kyriaki Tsirka - , University of Ioannina (Autor:in)
  • Christos K. Mytafides - , University of Ioannina (Autor:in)
  • Angelos Voudouris Itskaras - , University of Ioannina (Autor:in)
  • Marco Liebscher - , Professur für Baustoffe (Autor:in)
  • Eleftherios Lambrou - , University of Ioannina (Autor:in)
  • Leonidas N. Gergidis - , University of Ioannina (Autor:in)
  • Nektaria Marianthi Barkoula - , University of Ioannina (Autor:in)
  • Alkiviadis S. Paipetis - , University of Ioannina (Autor:in)

Abstract

This study demonstrates for the first time a structural glass fiber-reinforced polymer (GFRP) composite laminate with efficient thermal energy harvesting properties as a thermoelectric generator (TEG). This TEG laminate was fabricated by stacking unidirectional glass fiber (GF) laminae coated with p- and n-type single-wall carbon nanotube (SWCNT) inks via a blade coating technique. According to their thermoelectric (TE) response, the p- and n-type GF-SWCNT fabrics exhibited Seebeck coefficients of +23 and -29 μV/K with 60 and 118 μW/m·K2 power factor values, respectively. The in-series p-n interconnection of the TE-enabled GF-SWCNT fabrics and their subsequent impregnation with epoxy resin effectively generated an electrical power output of 2.2 μW directly from a 16-ply GFRP TEG laminate exposed to a temperature difference (ΔT) of 100 K. Both experimental and modeling work validated the TE performance. The structural integrity of the multifunctional GFRP was tested by three-point bending coupled with online monitoring of the steady-state TE current (Isc) at a ΔT of 80 K. Isc was found to closely follow all transitions and discontinuities related to structural damage in the stress/strain curve, thus showing its potential to serve the functions of power generation and damage monitoring.

Details

OriginalspracheEnglisch
Seiten (von - bis)24138-24153
Seitenumfang16
FachzeitschriftACS Applied Materials and Interfaces
Jahrgang13
Ausgabenummer20
PublikationsstatusVeröffentlicht - 26 Mai 2021
Peer-Review-StatusJa

Externe IDs

PubMed 33988382

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • advanced glass fiber-reinforced polymer (GFRP) composites, in-plane thermal gradient, large-scale thermal energy harvesting, multifunctional composites, organic thermoelectrics, Seebeck effect, structural TEG laminate, thermoelectric modeling

Bibliotheksschlagworte