Active MR k-space Sampling with Reinforcement Learning
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Deep learning approaches have recently shown great promise in accelerating magnetic resonance image (MRI) acquisition. The majority of existing work have focused on designing better reconstruction models given a pre-determined acquisition trajectory, ignoring the question of trajectory optimization. In this paper, we focus on learning acquisition trajectories given a fixed image reconstruction model. We formulate the problem as a sequential decision process and propose the use of reinforcement learning to solve it. Experiments on a large scale public MRI dataset of knees show that our proposed models significantly outperform the state-of-the-art in active MRI acquisition, over a large range of acceleration factors.
Details
Originalsprache | Englisch |
---|---|
Titel | Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings |
Redakteure/-innen | Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz |
Herausgeber (Verlag) | Springer, Berlin [u. a.] |
Seiten | 23-33 |
Seitenumfang | 11 |
ISBN (Print) | 9783030597122 |
Publikationsstatus | Veröffentlicht - 2020 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science, Volume 12262 |
---|---|
ISSN | 0302-9743 |
Konferenz
Titel | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 |
---|---|
Dauer | 4 - 8 Oktober 2020 |
Stadt | Lima |
Land | Peru |
Externe IDs
ORCID | /0000-0001-9430-8433/work/146646291 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Active MRI acquisition, Reinforcement learning