Active MR k-space Sampling with Reinforcement Learning

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Deep learning approaches have recently shown great promise in accelerating magnetic resonance image (MRI) acquisition. The majority of existing work have focused on designing better reconstruction models given a pre-determined acquisition trajectory, ignoring the question of trajectory optimization. In this paper, we focus on learning acquisition trajectories given a fixed image reconstruction model. We formulate the problem as a sequential decision process and propose the use of reinforcement learning to solve it. Experiments on a large scale public MRI dataset of knees show that our proposed models significantly outperform the state-of-the-art in active MRI acquisition, over a large range of acceleration factors.

Details

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
Redakteure/-innenAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
Herausgeber (Verlag)Springer, Berlin [u. a.]
Seiten23-33
Seitenumfang11
ISBN (Print)9783030597122
PublikationsstatusVeröffentlicht - 2020
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science, Volume 12262
ISSN0302-9743

Konferenz

Titel23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Dauer4 - 8 Oktober 2020
StadtLima
LandPeru

Externe IDs

ORCID /0000-0001-9430-8433/work/146646291

Schlagworte

Schlagwörter

  • Active MRI acquisition, Reinforcement learning

Bibliotheksschlagworte