Achieving software-equivalent accuracy for hyperdimensional computing with ferroelectric-based in-memory computing

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Arman Kazemi - , University of Notre Dame (Autor:in)
  • Franz Müller - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Mohammad Mehdi Sharifi - , University of Notre Dame (Autor:in)
  • Hamza Errahmouni - , University of California at Irvine (Autor:in)
  • Gerald Gerlach - , Professur für Festkörperelektronik (Autor:in)
  • Thomas Kämpfe - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Mohsen Imani - , University of California at Irvine (Autor:in)
  • Xiaobo Sharon Hu - , University of Notre Dame (Autor:in)
  • Michael Niemier - , University of Notre Dame (Autor:in)

Abstract

Hyperdimensional computing (HDC) is a brain-inspired computational framework that relies on long hypervectors (HVs) for learning. In HDC, computational operations consist of simple manipulations of hypervectors and can be incredibly memory-intensive. In-memory computing (IMC) can greatly improve the efficiency of HDC by reducing data movement in the system. Most existing IMC implementations of HDC are limited to binary precision which inhibits the ability to match software-equivalent accuracies. Moreover, memory arrays used in IMC are restricted in size and cannot immediately support the direct associative search of large binary HVs (a ubiquitous operation, often over 10,000+ dimensions) required to achieve acceptable accuracies. We present a multi-bit IMC system for HDC using ferroelectric field-effect transistors (FeFETs) that simultaneously achieves software-equivalent-accuracies, reduces the dimensionality of the HDC system, and improves energy consumption by 826x and latency by 30x when compared to a GPU baseline. Furthermore, for the first time, we experimentally demonstrate multi-bit, array-level content-addressable memory (CAM) operations with FeFETs. We also present a scalable and efficient architecture based on CAMs which supports the associative search of large HVs. Furthermore, we study the effects of device, circuit, and architectural-level non-idealities on application-level accuracy with HDC.

Details

OriginalspracheEnglisch
Aufsatznummer19201
Seitenumfang15
FachzeitschriftScientific reports
Jahrgang12 (2022)
Ausgabenummer1
PublikationsstatusVeröffentlicht - 10 Nov. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 36357468
ORCID /0000-0002-7062-9598/work/174430570

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete