A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Uwe Freudenberg - , Technische Universität Dresden (Autor:in)
  • Andreas Hermann - , Technische Universität Dresden (Autor:in)
  • Petra B. Welzel - , Technische Universität Dresden (Autor:in)
  • Katja Stirl - , Technische Universität Dresden (Autor:in)
  • Sigrid C. Schwarz - , Universität Leipzig (Autor:in)
  • Milauscha Grimmer - , Technische Universität Dresden (Autor:in)
  • Andrea Zieris - , Technische Universität Dresden (Autor:in)
  • Woranan Panyanuwat - , Technische Universität Dresden (Autor:in)
  • Stefan Zschoche - , Technische Universität Dresden (Autor:in)
  • Dorit Meinhold - , Technische Universität Dresden (Autor:in)
  • Alexander Storch - , Technische Universität Dresden (Autor:in)
  • Carsten Werner - , Center for Regenerative Therapies Dresden (CRTD), Professur für Biofunktionale Polymermaterialien (gB/IPF), Max Bergmann Zentrum für Biomaterialien Dresden (MBZ) (Autor:in)

Abstract

Biofunctional matrices for in vivo tissue engineering strategies must be modifiable in both biomolecular composition and mechanical characteristics. To address this challenge, we present a modular system of biohybrid hydrogels based on covalently cross-linked heparin and star-shaped poly(ethylene glycols) (star-PEG) in which network characteristics can be gradually varied while heparin contents remain constant. Mesh size, swelling and elastic moduli were shown to correlate well with the degree of gel component cross-linking. Additionally, secondary conversion of heparin within the biohybrid gels allowed the covalent attachment of cell adhesion mediating RGD peptides and the non-covalent binding of soluble mitogens such as FGF-2. We applied the biohybrid gels to demonstrate the impact of mechanical and biomolecular cues on primary nerve cells and neural stem cells. The results demonstrate the cell type-specific interplay of synergistic signaling events and the potential of biohybrid materials to selectively stimulate cell fate decisions. These findings suggest important future uses for this material in cell replacement based-therapies for neurodegenerative diseases.

Details

OriginalspracheEnglisch
Seiten (von - bis)5049-5060
Seitenumfang12
FachzeitschriftBiomaterials
Jahrgang30
Ausgabenummer28
PublikationsstatusVeröffentlicht - Okt. 2009
Peer-Review-StatusJa

Externe IDs

PubMed 19560816
ORCID /0000-0003-0189-3448/work/162347712

Schlagworte

Schlagwörter

  • Biohybrid material, Cell replacement/implantation, Neural stem cells