A semi-algebraic view on quadratic constraints for polynomial systems

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We show that quadratic constraints admit a semi-algebraic interpretation of dynamic systems. This allows us to improve the analysis of polynomial systems under nonlinear feedback laws by use of the general S-procedure. Extending results to integral quadratic constraints, with the aid of LaSalle’s invariance theorem, we obtain a general stability proof for a larger class of multipliers. Numerical results show that the resulting hierarchy of sum-of-squares problems yields much better stability estimates for an exemplary unstable system with nonlinear stabilizing feedback than local approximations.

Details

OriginalspracheEnglisch
Aufsatznummer111549
Seitenumfang6
FachzeitschriftAutomatica
Jahrgang163
PublikationsstatusVeröffentlicht - 10 Feb. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-6734-704X/work/153107977
Mendeley a05ecb8d-abcc-31f6-8f21-70d7297dea4c
Scopus 85184841332

Schlagworte

Schlagwörter

  • Stability of nonlinear systems, Application of nonlinear analysis and design, Lyapunov methods