A semi-algebraic view on quadratic constraints for polynomial systems
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We show that quadratic constraints admit a semi-algebraic interpretation of dynamic systems. This allows us to improve the analysis of polynomial systems under nonlinear feedback laws by use of the general S-procedure. Extending results to integral quadratic constraints, with the aid of LaSalle’s invariance theorem, we obtain a general stability proof for a larger class of multipliers. Numerical results show that the resulting hierarchy of sum-of-squares problems yields much better stability estimates for an exemplary unstable system with nonlinear stabilizing feedback than local approximations.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 111549 |
Seitenumfang | 6 |
Fachzeitschrift | Automatica |
Jahrgang | 163 |
Publikationsstatus | Veröffentlicht - 10 Feb. 2024 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0001-6734-704X/work/153107977 |
---|---|
Mendeley | a05ecb8d-abcc-31f6-8f21-70d7297dea4c |
Scopus | 85184841332 |
Schlagworte
Schlagwörter
- Stability of nonlinear systems, Application of nonlinear analysis and design, Lyapunov methods