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a b s t r a c t

We show that quadratic constraints admit a semi-algebraic interpretation of dynamic systems. This
allows us to improve the analysis of polynomial systems under nonlinear feedback laws by use
of the general S-procedure. Extending results to integral quadratic constraints, with the aid of
LaSalle’s invariance theorem, we obtain a general stability proof for a larger class of multipliers.
Numerical results show that the resulting hierarchy of sum-of-squares problems yields much better
stability estimates for an exemplary unstable system with nonlinear stabilizing feedback than local
approximations.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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1. Introduction

We are concerned with the local analysis of polynomial dif-
erential equations subject to a bounded, memoryless nonlin-
ar operator that vanishes at the origin. Such problems often
rise in the study of dynamic feedback systems, for example,
uboptimal model-predictive control (Leung, Liao-McPherson, &
olmanovsky, 2021) or feedback by neural network controllers
Fazlyab, Morari, & Pappas, 2020; Hashemi, Ruths, & Fazlyab,
021; Yin, Seiler, & Arcak, 2021), where the nonlinear operators
n place would be a convex projection or a hyperbolic tangent,
espectively. Among the most basic applications are systems un-
er saturated feedback (Fang, Lin, & Rotea, 2008; Hindi & Boyd,
998; Ji, Sun, & Liu, 2008). One particular question of interest
s the region of attraction of such closed-loop systems, that is,
he set of all initial conditions that lead to converging system
esponses. While the true region of attraction is usually hard to
etermine (Genesio, Tartaglia, & Vicino, 1985), we are content
ith computing invariant subsets satisfying a dissipation inequal-

ty, typically a sublevel set of a Lyapunov function (La Salle, 1960).
otable approaches include sum-of-squares methods for poly-
omial nonlinearities (Topcu, Packard, & Seiler, 2008). Sum-of-
quares techniques were recently applied to polynomial systems
nd nonlinear operators satisfying integral quadratic constraints
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(IQCs) (Iannelli, Seiler, & Marcos, 2019). Most IQCs in literature
bound the nonlinear operator globally, i.e., for all possible inputs.
This is in stark contrast to the inherently local problem of finding
a region of attraction. Hence, conventional IQC approaches are
conservative for local analysis. In Summers and Packard (2010),
this problem is circumvented by the notion of local IQCs which
have been successfully applied to the analysis of closed loop
systems under saturation (Knoblach, Pfifer, & Seiler, 2015) or
control allocation schemes (Pusch, Ossmann, & Pfifer, 2022). Still,
the method is computationally cumbersome relying on a heuristic
iteration and does not scale well for multi-input, multi-output
nonlinear operators.

Our main contribution is to propose a new parametrization of
quadratic constraints as dissipativity conditions with polynomial
multipliers, which can be solved as sum-of-squares program,
using semi-algebraic sets. This result allows us to compute Lya-
punov functions over intersected quadratic constraints to certify
local stability of open-loop unstable systems. In extension, we
prove a relaxation of the dissipativity constraint in Iannelli et al.
(2019) that allows for a larger class of nonnegative multipli-
ers such as (but not limited to) sum-of-squares polynomials;
here, our stability result is directly based on La Salle’s invariance
principle.

Notation Let R be the space of real numbers, R≥0 the set of
nonnegative reals, Rn the Euclidean vector space of dimension n,
and Rm×m the (vector) space of m-by-m matrices. Let ∥·∥ and ⟨·, ·⟩
denote the Euclidean vector norm and dot product, respectively,
and Lm

2e the set of finite-time square-integrable trajectories v :

R≥0 → Rm, that is, v ∈ L2e if and only if
∫ T
0 ∥v(t)∥2dt < ∞

m×m
for any T ≥ 0. For a symmetric matrix M ∈ R and vector
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∈ Rm, define the quadratic form σM (y) = ⟨y,My⟩. The graph of
: Rm

→ Rm is the set graph∆ = {(v,w) ∈ R2m
| v = ∆(w)}.

. Preliminaries

Generally speaking, we consider nonlinear systems of the form

ẋ(t) = f (x(t), w(t)) (1a)

v(t) = h(x(t)) (1b)

(t) = ∆(v(t)), (1c)

here f : Rn
× Rm

→ Rn and h : Rn
→ Rm are Lipschitz

ontinuous satisfying f (0, 0) = 0, h(0) = 0; the nonlinear
perator ∆ : Rm

→ Rm is continuous, bounded,1 and ∆(0) = 0. A
olution of (1) on x0 ∈ Rn is an absolutely continuous trajectory
: R≥0 → Rn that satisfies (1) for almost all t ≥ 0 and x(0) = x0.

efinition 1. A set of initial conditions Ω ⊂ Rn is invariant with
espect to (1) if any solution x(·) on x0 ∈ Ω satisfies x(t) ∈ Ω for
all t ≥ 0.

2.1. Problem statement

The region of attraction R∆ is the largest invariant set R ⊂ Rn

such that all solutions x(·) of (1) with x(0) ∈ R converge to the
origin as t → ∞. Inner estimates of R∆ can be characterized by
Lyapunov-type arguments (Iannelli et al., 2019; La Salle, 1960;
Topcu et al., 2008). The region of attraction contains some open
neighbourhood of the origin if (1) is locally asymptotically stable
around the origin, which will be our standing assumption.

Problem 1. Compute a set R ⊆ R∆ which is invariant with
respect to (1).

In order to approach this problem, we use (integral) quadratic
constraints to describe a class of nonlinear systems, including (1),
for which stability can be assessed by polynomial methods.

2.2. Quadratic constraints

A quadratic constraint describes a subset of the input–output
space of the nonlinear operator ∆ that contains its graph. This
subset is a semi-algebraic set, that is, it contains all pairs (v,w) ∈

R2m that satisfy a polynomial (namely, quadratic) inequality. A
nonlinear operator is hence overapproximated by the class of
nonlinear operators that satisfy the same quadratic constraint (in
the sense to be defined next) and since this class is defined by
a polynomial (quadratic) inequality, stability can be assessed as
polynomial (matrix) optimization problems.

Definition 2. The operator ∆ satisfies the quadratic constraint
given by a symmetric matrix M ∈ R2m×2m if for all (v,w) ∈

graph∆

σM ((v,w)) ≥ 0, (2)

where σM : y ↦→ ⟨y,My⟩ is a quadratic form on R2m.

A consequence of this definition is that, if ∆ satisfies the
quadratic constraint given by M and v ∈ Lm

2e, then (2) is satisfied
by (v(t),∆ ◦ v(t)) for all t ≥ 0. The choice of M (or σM ,
respectively) directly influences the conservatism of any analysis
result. A list of possible choices for M for different nonlinear
operators can be found in Megretski and Rantzer (1997, Section

1 A function ψ : Rm
→ Rm is bounded if there exists a constant c ≥ 0 such

that ∥ψ(x)∥ ≤ c∥x∥ for all x ∈ Rm .
2

VI). Unfortunately, how to optimally pick σM is still an open ques-
tion in the analysis with (integral) quadratic constraints. A com-
mon, practical solution is a linear combination of σM1 , . . . , σMl
with nonnegative constant factors, see e.g. Iannelli et al. (2019)
and Pfifer and Seiler (2016). Note that various more complex
parametrizations have been studied in literature for specific op-
erators, e.g., Veenman and Scherer (2014). The following result is
a special case of Iannelli et al. (2019, Theorem 1) for quadratic
constraints based on the aforementioned linear combination. We
denote by w̃ the input of the open-loop dynamics defined by (1a)
nd (1b).

heorem 1. Let ∆ satisfy the quadratic constraints given by
1, . . . ,Ml; if there exist a smooth positive definite2 function V :

Rn
→ R≥0, nonnegative scalars λ1, . . . , λl ∈ R≥0, and a positive

definite function γ : R≥0 → R≥0 such that

⟨∇V (x), f (x, w̃)⟩ +

l∑
i=1

λiσMi ((h(x), w̃)) ≤ −γ (∥x∥) (3)

for all (x, w̃) ∈ Ω × Rm, where Ω = {x ∈ Rn
| V (x) ≤ 1} is

bounded,3 then Ω is an invariant subset of R∆. ◁

This result has two notable disadvantages: First, it unneces-
sarily requires that ∆ satisfies the quadratic constraints for all
v ∈ Rm, even though the condition for the Lyapunov function
is only assessed on the compact domain Ω; and second, while
suitable for open-loop locally stable systems, it cannot account
for unstable systems. A solution to overcome the first problem is
the notion of local QCs as given in the following definition.

Definition 3. The operator ∆ satisfies the local quadratic con-
straint given by a symmetric matrix M on a subset Υ ⊂ Rm if (2)
holds for all (v,w) ∈ graph∆ ∩ (Υ × Rm).

Corollary 1. Let ∆ satisfy the local quadratic constraints given
by M1, . . . ,Ml on Υ ⊂ Rm and let Ω be as in Theorem 1; if the
conditions of Theorem 1 are satisfied and h(Ω) = {h(x) | x ∈ Ω} ⊆

Υ , then Ω is an invariant subset of R∆. ◁

Although local quadratic constraints avoid the issues of clas-
sical quadratic constraints, they require a good a priori choice
of the set Υ . In that case, an iterative process can be employed
to improve the local constraint (see, e.g., Knoblach et al. (2015,
Alg. 1)). For a higher input/output dimension m, the selection
becomes tedious if not intractable. Instead, our approach will
build upon an implicit local relaxation through the semi-algebraic
nature of quadratic constraints, thus avoiding iterations.

Remark 1. Relaxations of (3) for linear systems have also been
proposed in Pfifer and Seiler (2016) and Veenman and Scherer
(2014); whether these are applicable in the nonlinear case is, to
the authors’ knowledge, an open question.

3. Semi-algebraic stability analysis

We improve the local stability analysis of polynomial systems
under nonlinear operators subject to quadratic constraints. A
quadratic constraint defines a semi-algebraic set of points (v,w)
satisfying (2) and hence provides an overapproximation of the
nonlinear operator. Through the generalized S-procedure for in-
tersections of semi-algebraic sets we can obtain a hierarchy of
polynomial inequalities that assert stability.

2 A function ψ : Rn
→ R≥0 is positive definite if ψ(0) = 0 and ψ(x) > 0 for

all x ∈ Rn
\ {0}.

3 Boundedness of Ω holds, e.g., if the function V is radially unbounded.
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roposition 1. Let ∆ satisfy the quadratic constraints given by
1, . . . ,Ml; if there exist a smooth positive definite function V :
n

→ R≥0, a positive definite function γ : R≥0 → R≥0, and
onnegative functions s1, . . . , sl : Rn+m

→ R≥0 such that

∇V (x), f (x, w̃)⟩ +

l∑
i=1

si(x, w̃)σMi ((h(x), w̃)) ≤ −γ (∥x∥) (4)

or all (x, w̃) ∈ Ω×Rm, where Ω = {x ∈ Rn
| V (x) ≤ 1} is compact,

hen Ω is an invariant subset of R∆.

roof. Suppose that V , γ , and s1, . . . , sl satisfy the assump-
ions above; take any x ∈ Ω , let w = ∆(h(x)), and define
˙ (x) = ⟨∇V (x), f (x, w)⟩. Then σMi ((h(x), w)) ≥ 0 as ∆ satis-
fies the quadratic constraint given by Mi and si(x, w) ≥ 0 by
nonnegativity for all i ∈ {1, . . . , l}; hence,

V̇ (x) ≤ −γ (∥x∥)

for all x ∈ Ω . Since γ is positive definite, {0} is the largest
invariant subset of Ω such that V̇ vanishes. Thus any solution
of (1) on x0 ∈ Ω converges to {0} by virtue of La Salle (1960,
Theorem 2) and Ω is invariant, the desired result. □

For the remainder of this section, we limit ourselves to the
scalar operators (m = 1) typically encountered in the feedback
from suboptimization or neural networks; assuming that ∆ is
monotone nondecreasing and slope-restricted.

Definition 4. The operator ∆ : R → R is monotone nondecreas-
ing and slope-restricted if ∆(0) = 0 and ⟨∆(u)−∆(v), c(u− v)−
(u) +∆(v)⟩ ≥ 0, where c ≥ 0, for all u, v ∈ R.

Operators such as the saturation function, projection onto an
interval {0} ⊆ I ⊂ R, and the activation functions ReLU and tanh
are monotone nondecreasing and slope-restricted. By definition,
the graph of such an operator ∆ lies in the sector [0, c], that is,

⟨∆(v), cv −∆(v)⟩ ≥ 0 (5)

for all v ∈ R. This equation can equivalently be written in a
quadratic form σMc ((v,w)) with

Mc =

[
0 c/2

c/2 −1

]
where c ≥ 0 is the upper sector bound, implying that ∆ satisfies
the quadratic constraint given by Mc .

Using some v̂ > 0, we define

v1(·) = h(x(·)) − v̂, v2(·) = h(x(·)) + v̂, (6a)

w1(·) = ∆1(v1(·)) + δ1, w2(·) = ∆2(v2(·)) + δ2, (6b)

∆1 : v ↦→ ∆(v + v̂) − δ1, ∆2 : v ↦→ ∆(v − v̂) − δ2, (6c)

where δ1 = ∆(+v̂) and δ2 = ∆(−v̂) are constants. Clearly, we
have that w1(·) ≡ w2(·) ≡ w(·).

Lemma 1. Let∆ be a monotone nondecreasing and slope-restricted
operator; the graphs of ∆1,∆2 defined in (6) lie in the sector [0, c].

Proof. It follows from (6) and the definition of δ1,2 that ∆1(0) =

∆2(0) = 0. Furthermore,

⟨∆1,2(u) −∆1,2(v), c(u − v) −∆1,2(u) +∆1,2(v)⟩ ≡

⟨∆(ū1,2) −∆(v̄1,2), c(ū1,2 − v̄) −∆(ū1,2) +∆(v̄1,2)⟩,

where ū1,2 = u ± v̂, v̄1,2 = v ± v̂ ∈ R; hence, ∆1,2 satisfy
Definition 4 and the sector bound (5) is satisfied. □
3

In other words, the augmented operator (∆1,∆2) : R2
→

2 satisfies multiple quadratic constraints based on Mc . Then
Proposition 1 can be used to establish asymptotic stability of the
augmented system

ẋ(t) = f (x(t), w1(t), w2(t))
v1(t) = h(x(t)) − v̂, v2(t) = h(x(t)) + v̂

1(t) = ∆1(v1(t)), w2(t) = ∆2(v2(t))

sing that w1(t) ≡ w2(t) for all t ≥ 0.

. Extensions to integral quadratic constraints

In order to satisfy a quadratic constraint, the inequality (2)
ust hold point-wise in time for any pair of input/output signals
v,w) of the nonlinear operator∆. Quadratic constraints can thus
e used to describe nonlinear operators without internal dynamic
r memory. Consequently, time-varying operators such as delays
an be described by integral quadratic constraints (Megretski
Rantzer, 1997). IQCs were initially specified in the frequency

omain but time-domain formulations suitable for Lyapunov-
ike analysis were derived later (see, e.g., Seiler, 2015). Here, the
nternal dynamics are represented by a filter ψ with state xψ :

≥0 → Rnψ , output yψ : R≥0 → R2m, linear dynamics fψ : Rnψ ×
2m

→ Rnψ , and linear output function hψ : Rnψ × R2m
→ R2m.

e are limiting this study to integral quadratic constraints with
inite horizon, so-called hard IQCs.

efinition 5. The operator ∆ satisfies the hard integral quadratic
onstraint Π = (M, ψ) if, for all N ≥ 0 and v ∈ L2e,∫ N

0
σM (yψ (t)) dt ≥ 0, (7)

ubject to

ẋψ (t) = fψ (xψ (t), (v(t), w(t))), xψ (0) = 0,

ψ (t) = hψ (xψ (t), (v(t), w(t)))

nd (v(t), w(t)) ∈ graph∆ for all t ∈ [0,N].

In this section we consider that ∆ satisfies a set of hard
QCs Π1 = (Mi, ψi), . . . ,Πl = (Ml, ψl). We denote the combined
ynamics of (1a), (1b), and ψ1, . . . , ψl under input w̃ as

˙(t) = f̄ (z(t), w̃) (8a)

ψ (t) = h̄(z(t), w̃) (8b)

or almost all t ≥ 0, where z = (x, xψ1 , . . . , xψl ) ∈ Rnz is the
xtended state, yψ = (yψ1 , . . . , yψl ) ∈ R2lm is the stacked output

of ψ1, . . . , ψl, and v(t) ≡ h(x(t)). The results of Iannelli et al.
(2019, Theorem 1) extend Theorem 1 to the integral quadratic
constraints Π1, . . . ,Πl if there exist a smooth positive definite
function V : Rnz → R≥0, constants λ1, . . . , λl ≥ 0, and a positive
definite function γ : R≥0 → R≥0 such that

∇V (z)T f̄ (z, w̃) +

l∑
i=1

λiσMi (h̄i(z, w̃)) ≤ −γ (∥z∥) (9)

for all (z, w̃) ∈ Ω̄ ×Rm, where Ω̄ = {z|V (z) ≤ 1} is bounded and
Πi = (Mi, ψi) for all i ∈ {1, . . . , l}. It should be noted that under
(9), the set Ω̄ is invariant with respect to (8) and {x | V (x, 0) ≤ 1}
is a subset of R∆, but the latter is not invariant with respect to
(1).
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.1. An extended stability theorem

While the definition of integral quadratic constraints trivially
xtends to linear combinations with nonnegative constants, the
xtension of the semi-algebraic approach to IQCs is difficult. As
tep towards such an extension, we are going to prove an ex-
ended stability theorem which generalizes the result of Iannelli
t al. (2019, Theorem 1). Let σ̄M : R2lm

→ Rl denote the element-
ise quadratic form σ̄M : (h1, . . . , hl) ↦→ (σM1 (h1), . . . , σMl (hl))

where Πi = (Mi, ψi) for all i ∈ {1, . . . , l}. We introduce the
dditional state trajectories

(t) =

∫ t

0
σ̄M (h̄(z(τ ), w′(τ ))) dτ (10)

ubject to (8) and w′
∈ Lm

2e, where µ(·) lies in the nonnegative
rthant if w′

= ∆ ◦ v. By introducing the integral quadratic form
of (7) as an additional state, we turn the dissipativity condition (9)
into a standard Lyapunov inclusion constraint. In addition, we
obtain an upper bound on the value the integral state µ can reach
along converging solutions.

Theorem 2. Let ∆ satisfy the hard IQCs Π1, . . . ,Πl and suppose
that Ω̂ ⊂ Rnz × Rl be compact as well as invariant with respect to
(8), (10) for all w′

∈ Lm
2e such that yψi (·) satisfies (7) for Mi, where

Πi = (Mi, ψi), for all i ∈ {1, . . . , l} and N ≥ 0; if there exist a
mooth positive definite function V : Rnz ×Rl

→ R≥0 and a positive
efinite function γ : R≥0 → R≥0 such that

zV (z, µ)T f̄ (z, w̃) + ∇µV (z, µ)Tσ̄M (h̄(z, w̃)) ≤ −γ (∥z∥) (11)

or all (z, µ, w̃) ∈ Ω̂×Rm, then Ω0 = {x | (x, 0, 0) ∈ Ω̂} is a subset
f R∆.

roof. The function ρ : (z, µ) ↦→ γ (∥z∥) is positive definite in z
nd nonnegative in µ. Hence, any solution (z, µ) : R≥0 → Rnz ×Rl

of (8), (10) on (z(0), µ(0)) ∈ Ω̂ satisfies

µ̇(t) = (σ̄M ◦ h̄)(z(t),∆(v(t))) (12)

and converges to X = {(0, µ) |µ ∈ Rl
} by La Salle (1960,

Theorem 1). Since f̄ is independent of µ, this is the desired
result. □

If (12) holds for all (z, µ) in some bounded level set Ω̂V of V ,
then Ω̂V is invariant with respect to all solutions of (8) and (10)
which satisfy the IQC condition (7).

Corollary 2. Let ∆ satisfy the hard IQCs Π1, . . . ,Πl and suppose
that Eq. (11) holds for the function V on the compact set Ω̂ , both
as defined in Theorem 2; if the solution z : R≥0 → Rnz of (8) for
w ∈ Lm

2e such that yψ (·) satisfies Π and z(0) ∈ Ω0 × {0}, then

sup
t≥0

µ(t) ≤ α−1(V (z(0), 0)),

where α : R≥0 → R≥0 is a continuous, strictly increasing function
satisfying α(∥(z, µ)∥) ≤ V (z, µ) on Ω̂ . ◁

Note that the lower bound α(·) exists since V is a continuous,
positive definite function and Ω̂ is compact (Kellett, 2014).

4.2. New classes of multipliers

One might think that the assumptions of Theorem 2 are more
difficult to prove given the additional dynamics; however, its
result is in fact necessary for for the dissipativity condition (9).
Being independent of µ, (11) reduces to (9) when taking

ˆ
V (z, µ) ≡ V (z) + λi|µi|

4

with V and λ1, . . . , λl as in Eq. (9), noting that the restriction of
|µi| onto the nonnegative reals is differentiable with ∇µi≥0|µi| =

1. We generalize this observation into a characterization of in-
variance.

Theorem 3. Let ∆ satisfy the hard IQCs Π1, . . . ,Πl; if there exist a
smooth function V : R≥0 × Rnz → R≥0, differentiable nonnegative
functions s = (s1, . . . , sl) : R≥0 → Rl

≥0, and a scalar r > 0 such
that

∇zV (t, z)T f̄ (z, w̃) + µ1ṡ1(t) + · · · + µlṡl(t)
+∇tV (t, z) + s(t)Tσ̄M (h̄(z, w̃)) ≤ 0 (13)

for all t ≥ 0 and (z, µ, w̃) ∈ Rnz × Rl
× Rm with V (0, z) ≤ r and

µ ∈ Rl
≥0, then Ω0 = {x | V (0, x, 0) ≤ r} is invariant with respect to

(1).

Proof. Integration of (13) along a solution (z, µ) : R≥0 → Rnz+l

of (1) and (12) with V (0, z(0)) ≤ r and µ(0) = 0 yields

0 ≥ V (T , z(T )) − V (0, z0) +

∑
i

si(T )µi(T ).

By nonnegativity, the multipliers si certify dissipativity of V for (1)
since ∆ satisfies the hard IQCs Π1, . . . ,Πl, that is, µ1(T ), . . . , µl
(T ) ≥ 0 for all T ≥ 0. □

5. Numerical examples

We consider the problem of the open-loop unstable linear
system

A =

[
0 1

14.7150 0

]
, B =

[
0
30

]
(14a)

with saturated LQR feedback (with Q = I2 and R = 1)

K =
[
−1.6043 −1.0521

]
(14b)

φ : v ↦→ sat(v), (14c)

where sat : R → R is the saturation function. As A + BK is
Hurwitz, the system (14) is locally stable but not globally. The
operator ∆ : v ↦→ v−sat(v) satisfies ∆(v̂) = 0 for all v̂ ∈ [−1, 1].
Hence, define v1,2 = Kx ∓ 1 and ∆1,2 = ∆(v ± 1); then ∆1,2
satisfy the quadratic constraint given by Mc=1 virtue of Lemma 1.
Let g1,2 = σMc ((v1,2, w)) ≥ 0 be the corresponding polynomial
inequalities.

In order to estimate the region of attraction of (14), we pos-
tulate the bilinear sum-of-squares optimization problem

max b (15a)

s.t. sg (V − g) ⪰ ∇V Tf +

∑
i∈{1,2}

si gi + ϵxTx (15b)

sb (P − b) ⪰ V − g (15c)

V − ϵxTx, s1, s2, sg , sb ⪰ 0, (15d)

where V is a polynomial decision variable of fixed degree, b
and g are scalar decision variables, the multipliers s1,2, sg , and
sb are sum-of-squares decision variables of fixed degree, f =

(A + BK )x − Bw are the closed-loop dynamics, P is a given shape
function, and ϵ > 0; the notation ‘‘⪰’’ denotes nonnegativity in
the sum-of-squares sense. We choose for P an ellipsoidal shape
which is elongated along the levels of Kx. We have solved (15)
using 250 iterations of coordinate descent (Chakraborty, Seiler,
& Balas, 2011). The resulting level sets Ω = {x | V (x) ≤ g} and
E = {x | P(x) ≤ b} are shown in Fig. 1. The optimal value is
ˆ
b = 8.728 03.
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Fig. 1. Region of attraction estimate Ω and inscribing ellipsoid E for (14) by
polynomial combination of constraints g1,2 , along with feedback v = Kx.

Fig. 2. Comparison of quadratic constraint given by Mc=1 , local quadratic
onstraint by Mc=0.67 , and polynomial combination of constraints g1,2 for the
onlinear operator ∆(·) in (14). Due to symmetry only the first quadrant is
hown.

For comparison, we estimate the region of attraction by a local
ector constraint. We have found experimentally that the closed-
oop of (14) can be shown to be stable by Corollary 1 if∆ satisfies
he local quadratic constraint given by Mc with c ≤ 0.67. This
ocal sector corresponds to a maximum feedback value vmax =

.0303, into which the region of attraction estimate Ω must be
mbedded. We have computed a Lyapunov function V and level
et g such that Ω satisfies this constraint while maximizing the
nscribing ellipsoid E with b̂ = 2.990 72.

We also applied the method of Fang et al. (2008), based
upon an exact ellipsoidal characterization of invariant sets for
linear systems with a single saturated input (Hu & Lin, 2002),
which yields b̂ = 10.774 73. While the approach of intersected
quadratic constraints is applicable to polynomial multi-input sys-
tems with higher-order Lyapunov functions, we have obtained a
result that is very close to the best (quadratic) solution. Moreover,
our approach returned an estimate which is much larger than
the estimate using a local sector constraint. This is achieved by
considering the globally unstable dynamics directly rather than a
conservative relaxation. Here, the sum term

∑
sigi in (15), evalu-

ted for the optimal solution, effectively serves as a higher-order
olynomial approximation of the graph of ∆ than the quadratic
onstraint as depicted in Fig. 2: Both the polynomial approxi-
ation and the local quadratic constraint exclude the open-loop
ase, which is included in the ‘global’ quadratic constraint given
y M ; yet, the local quadratic constraint is only valid for inputs
c=1

5

v ≤ 2/c ≈ 3 whereas the polynomial approximation is valid for
all v ∈ R.

6. Conclusion

Quadratic constraints for the assessment of stability under
nonlinear or unknown operators cannot be directly applied to
open-loop unstable systems. As multiple quadratic constraints
define a semialgebraic set, we have derived a dissipativity condi-
tion with polynomial multipliers from the generalized S-procedure
Moreover, we have extended this result to integral quadratic
constraints by virtue of LaSalle’s invariance principle.
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