A new class of irregular packing problems reducible to sphere packing in arbitrary norms

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Packing irregular objects composed by generalized spheres is considered. A generalized sphere is defined by an arbitrary norm. For three classes of packing problems, balance, homothetic and sparse packing, the corresponding new (generalized) models are formulated. Non-overlapping and containment conditions for irregular objects composed by generalized spheres are presented. It is demonstrated that these formulations can be stated for any norm. Different geometrical shapes can be treated in the same way by simply selecting a suitable norm. The approach is applied to generalized spheres defined by Lp norms and their compositions. Numerical solutions of small problem instances obtained by the global solver BARON are provided for two-dimensional objects composed by spheres defined in Lp norms to demonstrate the potential of the approach for a wide range of engineering optimization problems.

Details

OriginalspracheEnglisch
Aufsatznummer935
Seitenumfang17
FachzeitschriftMathematics
Jahrgang12 (2024)
Ausgabenummer7
PublikationsstatusVeröffentlicht - 22 März 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85190288152
Mendeley b05437b3-c8f0-3593-937a-9afb82ecb55d

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • composed objects, mathematical modeling, generalized spheres, arbitrary norms, packing, nonlinear optimization

Bibliotheksschlagworte