A modular in vitro flow model to analyse blood-surface interactions under physiological conditions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Juliane Valtin - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Stephan Behrens - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Manfred F. Maitz - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Florian Schmieder - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Frank Sonntag - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Carsten Werner - , Professur für Biofunktionale Polymermaterialien (gB/IPF), Leibniz-Institut für Polymerforschung Dresden (Autor:in)

Abstract

Newly developed materials for blood-contacting devices need to undergo hemocompatibility testing to prove compliance with clinical requirements. However, many current in vitro models disregard the influence of flow conditions and blood exchange as it occurs in vivo. Here, we present a flow model which allows testing of blood-surface interactions under more physiological conditions. This modular platform consists of a triple-pump-chip and a microchannel-chip with a customizable surface. Flow conditions can be adjusted individually within the physiological range. A performance test with whole blood confirmed the hemocompatibility of our modular platform. Hemolysis was negligible, inflammation and hemostasis parameters were comparable to those detected in a previously established quasi-static whole blood screening chamber. The steady supply of fresh blood avoids secondary effects by nonphysiological accumulation of activation products. Experiments with three subsequently tested biomaterials showed results similar to literature and our own experience. The reported results suggest that our developed flow model allows the evaluation of blood-contacting materials under physiological flow conditions. By adjusting the occurring wall shear stress, the model can be adapted for selected test conditions.

Details

OriginalspracheEnglisch
Seiten (von - bis)171-174
Seitenumfang4
FachzeitschriftCurrent Directions in Biomedical Engineering
Jahrgang7
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Okt. 2021
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0189-3448/work/161890267

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • bloodsurface interactions, hemocompatibility, in vitro flow model