A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this work, we demonstrate how Machine Learning (ML) techniques can be employed to externalize the knowledge and time intensive process of material parameter identification. This is done on the example of a recent data driven material model for the non-linear shear behavior of glass fiber reinforced polypropylene (GF/PP) (Gerritzen, 2022). A convolutional neural network (CNN) based model architecture is trained to predict material modeling parameters based on the input of stress–strain-curves. The optimal model architecture and training setup are determined by hyperparameter optimization (HPO). Solely virtual data, generated using the target material model, is used throughout the training and HPO. The final CNN is capable of calculating model parameter combinations from experimental stress–strain-curves which lead to excellent agreement between experimental and associated model curve.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 113274 |
Seitenumfang | 10 |
Fachzeitschrift | Computational Materials Science |
Jahrgang | 244 (2024) |
Frühes Online-Datum | 6 Aug. 2024 |
Publikationsstatus | Veröffentlicht - Sept. 2024 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0002-0169-8602/work/165453561 |
---|---|
ORCID | /0000-0003-1370-064X/work/165453757 |
ORCID | /0000-0003-2653-7546/work/165454122 |
WOS | 001290603700001 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Constitutive modeling, Fiber reinforced plastics, Machine learning, Neural networks, Parameter identification