A hybrid particle-mesh method for incompressible active polar viscous gels

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Rajesh Ramaswamy - , Max-Planck-Institut für Physik komplexer Systeme, Technische Universität Dresden, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • George Bourantas - , Technische Universität Dresden, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Frank Jülicher - , Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Ivo F. Sbalzarini - , Professur für Wissenschaftliches Rechnen für Systembiologie, Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

We present a hybrid particle-mesh method for numerically solving the hydrodynamic equations of incompressible active polar viscous gels. These equations model the dynamics of polar active agents, embedded in a viscous medium, in which stresses are induced through constant consumption of energy. The numerical method is based on Lagrangian particles and staggered Cartesian finite-difference meshes. We show that the method is second-order and first-order accurate with respect to grid and time-step sizes, respectively. Using the present method, we simulate the hydrodynamics in rectangular geometries, of a passive liquid crystal, of an active polar film and of active gels with topological defects in polarization. We show the emergence of spontaneous flow due to Fréedericksz transition, and transformation in the nature of topological defects by tuning the activity of the system.

Details

OriginalspracheEnglisch
Seiten (von - bis)334-361
Seitenumfang28
FachzeitschriftJournal of computational physics
Jahrgang291
PublikationsstatusVeröffentlicht - 5 Juni 2015
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4414-4340/work/142252140

Schlagworte

Schlagwörter

  • Active polar gels, Hybrid particle-mesh method, Mechanochemical processes, Non-Newtonian fluids, Numerical simulation