5G Channel Estimation Kernels on RISC-V Vector Digital Signal Processors

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Each generation of the wireless communication networks has contiguous demands for higher computing capabilities and lower the power consumption in the integrated circuitry. Thus, the optimization of the base-band signal processing kernels and the hardware architectures plays a pivotal role in the performance, latency, and energy efficiency of the Physical Layer (PHY). Channel Estimation (CE), a computationally intensive task with hard real-time requirements, involves significant amounts of matrix multiplications and inversions, when data flows between transmitter (TX) and receiver (RX). In this work, we present a software implementation of CE for the 5th Generation Cellular Networks (5G) New Radio (NR) in the Reduced Instruction Set Computer (RISC)-V architecture, showcasing how its vector processing capabilities can satisfy the throughput and delay requirements of 5G use cases. Specifically, we ported two CE kernels, the Least-Squares (LSE) and Minimum Mean Square Error (MMSE), onto a state-of-the-art single core vector processor. By exploiting data vectorization, the ARA core computes matrix arithmetic operations on multiple data sets simultaneously. Our single vector core serial optimization demonstrates that with a 16× 16 matrix window size and 16 vector lanes, the application's performance achieves a speedup of 78.27 when computing the LSE algorithm. When the number of operations per cycle are compared, the vector processor outperforms its scalar counterpart by 181.91 for the MMSE kernel. Our implementation orders the nested loops in a latency-reducing fashion to compute matrix arithmetic operations, resulting in LSE and MMSE estimator computing times of 8.44 μiota s and 12.31 μs, respectively.

Details

OriginalspracheEnglisch
Titel2024 International Conference on Microelectronics, ICM 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seitenumfang8
ISBN (elektronisch)979-8-3503-7939-6
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Konferenz

Titel36th International Conference on Microelectronics
KurztitelICM 2024
Veranstaltungsnummer36
Dauer14 - 17 Dezember 2024
Webseite
OrtMarriott Marquis City Center
StadtDoha
LandKatar

Externe IDs

ORCID /0000-0001-8469-9573/work/184003916

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • 5G, Base-Station-on-Chip, Channel estimation, Computer architecture, Hardware-acceleration, Massive MIMO, RISC-V