3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Haifeng Xu - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Song Wu - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Yuan Liu - , Shenzhen Institute of Advanced Technology (SIAT) (Autor:in)
  • Xiaopu Wang - , Shenzhen Institute of Artificial Intelligence and Robotics for Society (Autor:in)
  • Artem K Efremov - , Shenzhen Bay Laboratory (Autor:in)
  • Lei Wang - , Shenzhen Institute of Advanced Technology (SIAT) (Autor:in)
  • John S McCaskill - , Technische Universität Chemnitz (Autor:in)
  • Mariana Medina-Sánchez - , Mikro- und Nano-Biosysteme (FoG), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Oliver G Schmidt - , Technische Universität Chemnitz (Autor:in)

Abstract

Microscale organisms and specialized motile cells use protein-based spring-like responsive structures to sense, grasp and move. Rendering this biomechanical transduction functionality in an artificial micromachine for applications in single-cell manipulations is challenging due to the need for a bio-applicable nanoscale spring system with a large and programmable strain response to piconewton-scale forces. Here we present three-dimensional nanofabrication and monolithic integration, based on an acrylic elastomer photoresist, of a magnetic spring system with quantifiable compliance sensitive to 0.5 pN, constructed with customized elasticity and magnetization distributions at the nanoscale. We demonstrate the effective design programmability of these 'picospring' ensembles as energy transduction mechanisms for the integrated construction of customized soft micromachines, with onboard sensing and actuation functions at the single-cell scale for microrobotic grasping and locomotion. The integration of active soft springs into three-dimensional nanofabrication offers an avenue to create biocompatible soft microrobots for non-disruptive interactions with biological entities.

Details

OriginalspracheEnglisch
Seiten (von - bis)494-503
Seitenumfang10
FachzeitschriftNature nanotechnology
Jahrgang19
Ausgabenummer4
PublikationsstatusVeröffentlicht - Apr. 2024
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC11026159
Scopus 85181251507

Schlagworte

Schlagwörter

  • Locomotion, Research Design