300 mm CMOS-compatible superconducting HfN and ZrN thin films for quantum applications

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Roman Potjan - , Professur für Physik in hohen Magnetfeldern (gB/HZDR), Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Marcus Wislicenus - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Oliver Ostien - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Raik Hoffmann - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Maximilian Lederer - , Professur für Experimentalphysik/Photophysik, Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • André Reck - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Jennifer Emara - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Lisa Roy - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Benjamin Lilienthal-Uhlig - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • J. Wosnitza - , Professur für Physik in hohen Magnetfeldern (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)

Abstract

The rising interest in increased manufacturing maturity of quantum processing units is pushing the development of alternative superconducting materials for semiconductor fab process technology. However, these are often facing CMOS process incompatibility. In contrast to common CMOS materials, such as Al, TiN, and TaN, reports on the superconductivity of other suitable transition-metal nitrides are scarce, despite potential superiority. Here, we demonstrate fully CMOS-compatible fabrication of HfN and ZrN thin films on state-of-the-art 300 mm semiconductor process equipment, utilizing reactive DC magnetron sputtering on silicon wafers. Measurement of mechanical stress and surface roughness of the thin films demonstrates process compatibility. We investigated the materials phase and stoichiometry by structural analysis. The HfN and ZrN samples exhibit superconducting phase transitions with critical temperatures up to 5.84 and 7.32 K, critical fields of 1.73 and 6.40 T, and coherence lengths of 14 and 7 nm, respectively. A decrease in the critical temperature with decreasing film thickness indicates mesoscopic behavior due to geometric and grain-size limitations. The results promise a scalable application of HfN and ZrN in quantum computing and related fields.

Details

OriginalspracheEnglisch
Aufsatznummer172602
Seitenumfang8
FachzeitschriftApplied physics letters
Jahrgang123 (2023)
Ausgabenummer17
PublikationsstatusVeröffentlicht - 27 Okt. 2023
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte