ZEN: A flexible energy-efficient hardware classifier exploiting temporal sparsity in ECG data
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
State-of-the-art low-power ECG hardware classifiers rely on extraction of pre-defined, hand-tuned features. This hinders their usage in different applications, because of the time-consuming redesign of features for any new classification task. As an alternative, we present a machine-learning based approach to ECG classification in hardware that still relies on feature extraction but is much more flexible to use. We utilize a recurrent neural network with temporal sparsity inspired by biologically motivated event-based systems. Features are extracted by freely configurable time-domain filters that are fully integrated in the training process. These are sparsified via delta encoding, so that further processing only acts on changes in the features or the recurrent connections. A scalable hardware architecture derived from this concept allows for stand-alone classification on input data streams. Despite its flexibility, our design achieves a peak energy efficiency of 37 nJ per heartbeat and an ultra-low power consumption of 532 nW in real-time operation, driven by temporal sparsity and a systematic low-power implementation strategy. At the same time, its classification performance is on par with state-of-the-art software-based classifiers.
Details
Originalsprache | Englisch |
---|---|
Titel | 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS) |
Herausgeber (Verlag) | IEEE |
Seiten | 214-217 |
Seitenumfang | 4 |
ISBN (elektronisch) | 978-1-6654-0996-4 |
ISBN (Print) | 978-1-6654-0997-1 |
Publikationsstatus | Veröffentlicht - 15 Juni 2022 |
Peer-Review-Status | Ja |
Konferenz
Titel | 4th IEEE International Conference on Artificial Intelligence Circuits and Systems |
---|---|
Kurztitel | IEEE AICAS 2022 |
Veranstaltungsnummer | 4 |
Dauer | 13 - 15 Juni 2022 |
Webseite | |
Ort | Songdo Convensia & online |
Stadt | Incheon |
Land | Südkorea |
Externe IDs
Scopus | 85139022405 |
---|---|
Mendeley | 625563bf-0a90-3857-9643-f0373ee0f226 |
unpaywall | 10.1109/aicas54282.2022.9869958 |
ORCID | /0000-0002-6286-5064/work/142240640 |
Ieee | 10.1109/AICAS54282.2022.9869958 |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Electrocardiography, Low-power electronics, Neural network hardware, Recurrent neural networks