X-ray photoelectron spectroscopic investigation of atomic-layer-deposited spinel Li4Ti5O12: Calcination under reducing atmosphere

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alireza M. Kia - , Fraunhofer-Institut für Photonische Mikrosysteme, Technische Universität Bergakademie Freiberg (Autor:in)
  • Jan Speulmanns - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Jennifer Emara - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Pavel Potapov - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Axel Lubk - , CEOS-Stiftungsprofessur für Elektronenoptik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Nora Haufe - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)

Abstract

Across all material candidates used as anodes in lithium-ion batteries, lithium titanate (Li4Ti5O12) (LTO) is an excellent replacement for conventional electrode materials, such as graphite or silicon. Compares to commercial graphite anodes, LTO offers a higher charging rate and safer operation, and compares to silicon, it undergoes almost no volume expansion during intercalation of lithium ions into the crystal lattice, so-called zero-strain material. However, the LTO performance still suffers from low conductivity due to the oxidation of titanium (Ti) in spinel-LTO and low ionic kinetics diffusion while cycling, which largely limits its application in solid-state batteries. Modifying the LTO lattice or crystal structure is one way to mitigate this problem. This study shows the coexistence of two main components, Ti4+ and Ti3+, in the crystal structure of LTO developed with a modified atomic layer deposition. The X-ray photoelectron spectroscopy analysis shows calcination under reducing gas, introduces Ti3+ and oxygen vacancies into the Li4Ti5O12 crystal, which can affect the electronic conductivity of LTO. Furthermore, we show how different substrates acting as diffusion barriers affect the film properties.

Details

OriginalspracheEnglisch
Aufsatznummer139694
FachzeitschriftThin solid films
Jahrgang768
PublikationsstatusVeröffentlicht - 1 März 2023
Peer-Review-StatusJa

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Anode material, Atomic layer deposition (ALD), Diffusion barrier, Lithium titanate (LTO), Spinel-LTO, X-ray photoelectron spectroscopy (XPS)