WRAP: A wavelet-regularised reconstruction algorithm for magnetic vector electron tomography
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Magnetic vector electron tomography (VET) is a promising technique that enables better understanding of micro- and nano-magnetic phenomena through the reconstruction of 3D magnetic fields at high spatial resolution. Here we introduce WRAP (Wavelet Regularised A Program), a reconstruction algorithm for magnetic VET that directly reconstructs the magnetic vector potential A using a compressed sensing framework which regularises for sparsity in the wavelet domain. We demonstrate that using WRAP leads to a significant increase in the fidelity of the 3D reconstruction and is especially robust when dealing with very limited data; using datasets simulated with realistic noise, we compare WRAP to a conventional reconstruction algorithm and find an improvement of ca. 60% when averaged over several performance metrics. Moreover, we further validate WRAP's performance on experimental electron holography data, revealing the detailed magnetism of vortex states in a CuCo nanowire. We believe WRAP represents a major step forward in the development of magnetic VET as a tool for probing magnetism at the nanoscale.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 113804 |
Fachzeitschrift | Ultramicroscopy |
Jahrgang | 253 |
Publikationsstatus | Veröffentlicht - Nov. 2023 |
Peer-Review-Status | Ja |
Externe IDs
PubMed | 37481909 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Compressed sensing, Electron microscopy, Inverse reconstruction, Nanomagnetism, Tomography