WRAP: A wavelet-regularised reconstruction algorithm for magnetic vector electron tomography

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • George R. Lewis - , University of Cambridge (Autor:in)
  • Daniel Wolf - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Axel Lubk - , CEOS-Stiftungsprofessur für Elektronenoptik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Emilie Ringe - , University of Cambridge (Autor:in)
  • Paul A. Midgley - , University of Cambridge (Autor:in)

Abstract

Magnetic vector electron tomography (VET) is a promising technique that enables better understanding of micro- and nano-magnetic phenomena through the reconstruction of 3D magnetic fields at high spatial resolution. Here we introduce WRAP (Wavelet Regularised A Program), a reconstruction algorithm for magnetic VET that directly reconstructs the magnetic vector potential A using a compressed sensing framework which regularises for sparsity in the wavelet domain. We demonstrate that using WRAP leads to a significant increase in the fidelity of the 3D reconstruction and is especially robust when dealing with very limited data; using datasets simulated with realistic noise, we compare WRAP to a conventional reconstruction algorithm and find an improvement of ca. 60% when averaged over several performance metrics. Moreover, we further validate WRAP's performance on experimental electron holography data, revealing the detailed magnetism of vortex states in a CuCo nanowire. We believe WRAP represents a major step forward in the development of magnetic VET as a tool for probing magnetism at the nanoscale.

Details

OriginalspracheEnglisch
Aufsatznummer113804
FachzeitschriftUltramicroscopy
Jahrgang253
PublikationsstatusVeröffentlicht - Nov. 2023
Peer-Review-StatusJa

Externe IDs

PubMed 37481909

Schlagworte

Schlagwörter

  • Compressed sensing, Electron microscopy, Inverse reconstruction, Nanomagnetism, Tomography