Workload merging potential in SAP Hybris

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Robin Rehrmann - , Professur für Datenbanken (Autor:in)
  • Martin Keppner - , Technische Universität München (Autor:in)
  • Wolfgang Lehner - , Professur für Datenbanken (Autor:in)
  • Carsten Binnig - , Technische Universität Dresden (Autor:in)
  • Arne Schwarz - , SAP Research (Autor:in)

Abstract

OLTP DBMSs in enterprise scenarios are often facing the challenge to deal with workload peaks resulting from events such as Cyber Monday or Black Friday. The traditional solution to prevent running out of resources and thus coping with such workload peaks is to use a significant over-provisioning of the underlying infrastructure. Another direction to cope with such peak scenarios is to apply resource sharing. In a recent work, we showed that merging read statements in OLTP scenarios offers the opportunity to maintain low latency for systems under heavy load without over-provisioning. In this paper, we analyze a real enterprise OLTP workload - - SAP Hybris - - with respect to statements types, complexity, and hot-spot statements to find potential candidates for workload sharing in OLTP. We additionally share work of the Hybris workload in our system OLTPShare and report on savings with respect to CPU consumption. Another interesting effect we show is that with OLTPShare, we can increase the SAP Hybris throughput by 20%.

Details

OriginalspracheEnglisch
TitelDBTest '20: Proceedings of the workshop on Testing Database Systems
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seitenumfang6
ISBN (elektronisch)978-1-4503-8001-0
PublikationsstatusVeröffentlicht - 19 Juni 2020
Peer-Review-StatusJa

Publikationsreihe

ReiheMOD: International Conference on Management of Data (DBTest)

Konferenz

Titel2020 Workshop on Testing Database Systems, DBTest 2020
Dauer19 Juni 2020
StadtPortland
LandUSA/Vereinigte Staaten

Externe IDs

Scopus 85086079960
ORCID /0000-0001-8107-2775/work/142253455