Why Lift so Heavy? Slimming Large Language Models by Cutting Off the Layers

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Large Language Models (LLMs) demonstrate exceptional language understanding and generation capabilities by learning from context. Leveraging the strong in-context learning (ICL) abilities of LLMs, prompt-based fine-tuning has proven to be effective for enhancing the adaptability and alignment of LLMs, especially in low-data scenarios. However, the billions of parameters resulting from layer stacking in LLMs present significant computational challenges, limiting the practicality of fine-tuning. To tackle this problem, we explore the application of layer-wise model pruning in prompt-based fine-tuning of LLMs for few-shot learning scenarios. Our approach involves dropping certain model layers and fine-tuning the model with the remaining layers. Surprisingly, we observe that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks. Remarkably, in certain cases, models with a single layer outperform their fully layered counterparts. These findings offer valuable insights for future work aimed at mitigating the size constraints of LLMs while preserving their performance, thereby opening avenues for significantly more efficient use of LLMs.

Details

OriginalspracheEnglisch
TitelInternational Joint Conference on Neural Networks, IJCNN 2025 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
ISBN (elektronisch)9798331510428
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings of the International Joint Conference on Neural Networks
ISSN2161-4393

Konferenz

TitelInternational Joint Conference on Neural Networks 2025
UntertitelAll Neural Network roads lead to Rome
KurztitelIJCNN 2025
Dauer30 Juni - 5 Juli 2025
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtPontificia Università Gregoriana
StadtRome
LandItalien

Externe IDs

ORCID /0000-0001-5458-8645/work/200631677

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Efficient Methods for NLP, Large Language Models, Layer Pruning